| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpmat0.c |
⊢ 𝐶 = ( ∅ CharPlyMat 𝑅 ) |
| 2 |
|
0fi |
⊢ ∅ ∈ Fin |
| 3 |
|
id |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) |
| 4 |
|
0ex |
⊢ ∅ ∈ V |
| 5 |
4
|
snid |
⊢ ∅ ∈ { ∅ } |
| 6 |
|
mat0dimbas0 |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) |
| 7 |
5 6
|
eleqtrrid |
⊢ ( 𝑅 ∈ Ring → ∅ ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ) |
| 8 |
|
eqid |
⊢ ( ∅ Mat 𝑅 ) = ( ∅ Mat 𝑅 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ ( ∅ Mat 𝑅 ) ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) |
| 10 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) = ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) |
| 12 |
|
eqid |
⊢ ( ∅ maDet ( Poly1 ‘ 𝑅 ) ) = ( ∅ maDet ( Poly1 ‘ 𝑅 ) ) |
| 13 |
|
eqid |
⊢ ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) = ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) |
| 14 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
| 15 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) = ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) |
| 16 |
|
eqid |
⊢ ( ∅ matToPolyMat 𝑅 ) = ( ∅ matToPolyMat 𝑅 ) |
| 17 |
|
eqid |
⊢ ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) = ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) |
| 18 |
1 8 9 10 11 12 13 14 15 16 17
|
chpmatval |
⊢ ( ( ∅ ∈ Fin ∧ 𝑅 ∈ Ring ∧ ∅ ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ) → ( 𝐶 ‘ ∅ ) = ( ( ∅ maDet ( Poly1 ‘ 𝑅 ) ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) ) ) ) |
| 19 |
2 3 7 18
|
mp3an2i |
⊢ ( 𝑅 ∈ Ring → ( 𝐶 ‘ ∅ ) = ( ( ∅ maDet ( Poly1 ‘ 𝑅 ) ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) ) ) ) |
| 20 |
10
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → ( Poly1 ‘ 𝑅 ) ∈ Ring ) |
| 21 |
|
mdet0pr |
⊢ ( ( Poly1 ‘ 𝑅 ) ∈ Ring → ( ∅ maDet ( Poly1 ‘ 𝑅 ) ) = { 〈 ∅ , ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) 〉 } ) |
| 22 |
21
|
fveq1d |
⊢ ( ( Poly1 ‘ 𝑅 ) ∈ Ring → ( ( ∅ maDet ( Poly1 ‘ 𝑅 ) ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) ) ) = ( { 〈 ∅ , ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) 〉 } ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) ) ) ) |
| 23 |
20 22
|
syl |
⊢ ( 𝑅 ∈ Ring → ( ( ∅ maDet ( Poly1 ‘ 𝑅 ) ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) ) ) = ( { 〈 ∅ , ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) 〉 } ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) ) ) ) |
| 24 |
11
|
mat0dimid |
⊢ ( ( Poly1 ‘ 𝑅 ) ∈ Ring → ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) = ∅ ) |
| 25 |
20 24
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) = ∅ ) |
| 26 |
25
|
oveq2d |
⊢ ( 𝑅 ∈ Ring → ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) = ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ∅ ) ) |
| 27 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
| 28 |
14 10 27
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 29 |
11
|
mat0dimscm |
⊢ ( ( ( Poly1 ‘ 𝑅 ) ∈ Ring ∧ ( var1 ‘ 𝑅 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ∅ ) = ∅ ) |
| 30 |
20 28 29
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ∅ ) = ∅ ) |
| 31 |
26 30
|
eqtrd |
⊢ ( 𝑅 ∈ Ring → ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) = ∅ ) |
| 32 |
|
d0mat2pmat |
⊢ ( 𝑅 ∈ Ring → ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) = ∅ ) |
| 33 |
31 32
|
oveq12d |
⊢ ( 𝑅 ∈ Ring → ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) ) = ( ∅ ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ∅ ) ) |
| 34 |
11
|
matring |
⊢ ( ( ∅ ∈ Fin ∧ ( Poly1 ‘ 𝑅 ) ∈ Ring ) → ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ∈ Ring ) |
| 35 |
2 20 34
|
sylancr |
⊢ ( 𝑅 ∈ Ring → ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ∈ Ring ) |
| 36 |
|
ringgrp |
⊢ ( ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ∈ Ring → ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ∈ Grp ) |
| 37 |
35 36
|
syl |
⊢ ( 𝑅 ∈ Ring → ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ∈ Grp ) |
| 38 |
|
mat0dimbas0 |
⊢ ( ( Poly1 ‘ 𝑅 ) ∈ Ring → ( Base ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) = { ∅ } ) |
| 39 |
20 38
|
syl |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) = { ∅ } ) |
| 40 |
5 39
|
eleqtrrid |
⊢ ( 𝑅 ∈ Ring → ∅ ∈ ( Base ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) |
| 41 |
|
eqid |
⊢ ( Base ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) = ( Base ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) |
| 42 |
|
eqid |
⊢ ( 0g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) = ( 0g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) |
| 43 |
41 42 13
|
grpsubid |
⊢ ( ( ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ∈ Grp ∧ ∅ ∈ ( Base ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) → ( ∅ ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ∅ ) = ( 0g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) |
| 44 |
37 40 43
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → ( ∅ ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ∅ ) = ( 0g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) |
| 45 |
33 44
|
eqtrd |
⊢ ( 𝑅 ∈ Ring → ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) ) = ( 0g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) |
| 46 |
45
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( { 〈 ∅ , ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) 〉 } ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) ) ) = ( { 〈 ∅ , ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) 〉 } ‘ ( 0g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) ) |
| 47 |
11
|
mat0dim0 |
⊢ ( ( Poly1 ‘ 𝑅 ) ∈ Ring → ( 0g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) = ∅ ) |
| 48 |
20 47
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) = ∅ ) |
| 49 |
48
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( { 〈 ∅ , ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) 〉 } ‘ ( 0g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) = ( { 〈 ∅ , ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) 〉 } ‘ ∅ ) ) |
| 50 |
|
fvex |
⊢ ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ∈ V |
| 51 |
4 50
|
fvsn |
⊢ ( { 〈 ∅ , ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) 〉 } ‘ ∅ ) = ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) |
| 52 |
49 51
|
eqtrdi |
⊢ ( 𝑅 ∈ Ring → ( { 〈 ∅ , ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) 〉 } ‘ ( 0g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) = ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 53 |
46 52
|
eqtrd |
⊢ ( 𝑅 ∈ Ring → ( { 〈 ∅ , ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) 〉 } ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) ) ) = ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 54 |
23 53
|
eqtrd |
⊢ ( 𝑅 ∈ Ring → ( ( ∅ maDet ( Poly1 ‘ 𝑅 ) ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( 1r ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ) ( -g ‘ ( ∅ Mat ( Poly1 ‘ 𝑅 ) ) ) ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) ) ) = ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 55 |
19 54
|
eqtrd |
⊢ ( 𝑅 ∈ Ring → ( 𝐶 ‘ ∅ ) = ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) |