| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpmatfval.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
| 2 |
|
chpmatfval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 3 |
|
chpmatfval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 4 |
|
chpmatfval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 5 |
|
chpmatfval.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
| 6 |
|
chpmatfval.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑃 ) |
| 7 |
|
chpmatfval.s |
⊢ − = ( -g ‘ 𝑌 ) |
| 8 |
|
chpmatfval.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 9 |
|
chpmatfval.m |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
| 10 |
|
chpmatfval.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 11 |
|
chpmatfval.i |
⊢ 1 = ( 1r ‘ 𝑌 ) |
| 12 |
|
df-chpmat |
⊢ CharPlyMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) ) ) |
| 13 |
12
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → CharPlyMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) ) ) ) |
| 14 |
|
oveq12 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = ( 𝑁 Mat 𝑅 ) ) |
| 15 |
14 2
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = 𝐴 ) |
| 16 |
15
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = ( Base ‘ 𝐴 ) ) |
| 17 |
16 3
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = 𝐵 ) |
| 18 |
|
simpl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 𝑛 = 𝑁 ) |
| 19 |
|
simpr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
| 20 |
19
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Poly1 ‘ 𝑟 ) = ( Poly1 ‘ 𝑅 ) ) |
| 21 |
20 4
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Poly1 ‘ 𝑟 ) = 𝑃 ) |
| 22 |
18 21
|
oveq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) = ( 𝑁 maDet 𝑃 ) ) |
| 23 |
22 6
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) = 𝐷 ) |
| 24 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Poly1 ‘ 𝑟 ) = ( Poly1 ‘ 𝑅 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Poly1 ‘ 𝑟 ) = ( Poly1 ‘ 𝑅 ) ) |
| 26 |
25 4
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Poly1 ‘ 𝑟 ) = 𝑃 ) |
| 27 |
18 26
|
oveq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) = ( 𝑁 Mat 𝑃 ) ) |
| 28 |
27 5
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) = 𝑌 ) |
| 29 |
28
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) = ( -g ‘ 𝑌 ) ) |
| 30 |
29 7
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) = − ) |
| 31 |
28
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) = ( ·𝑠 ‘ 𝑌 ) ) |
| 32 |
31 9
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) = · ) |
| 33 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( var1 ‘ 𝑟 ) = ( var1 ‘ 𝑅 ) ) |
| 34 |
33 8
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( var1 ‘ 𝑟 ) = 𝑋 ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( var1 ‘ 𝑟 ) = 𝑋 ) |
| 36 |
28
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) = ( 1r ‘ 𝑌 ) ) |
| 37 |
36 11
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) = 1 ) |
| 38 |
32 35 37
|
oveq123d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) = ( 𝑋 · 1 ) ) |
| 39 |
|
oveq12 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 matToPolyMat 𝑟 ) = ( 𝑁 matToPolyMat 𝑅 ) ) |
| 40 |
39 10
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 matToPolyMat 𝑟 ) = 𝑇 ) |
| 41 |
40
|
fveq1d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) = ( 𝑇 ‘ 𝑚 ) ) |
| 42 |
30 38 41
|
oveq123d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) = ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) |
| 43 |
23 42
|
fveq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) = ( 𝐷 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) ) |
| 44 |
17 43
|
mpteq12dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝐷 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) ) ) |
| 45 |
44
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) ∧ ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) ) → ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝐷 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) ) ) |
| 46 |
|
simpl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
| 47 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ V ) |
| 49 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
| 50 |
|
mptexg |
⊢ ( 𝐵 ∈ V → ( 𝑚 ∈ 𝐵 ↦ ( 𝐷 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) ) ∈ V ) |
| 51 |
49 50
|
mp1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑚 ∈ 𝐵 ↦ ( 𝐷 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) ) ∈ V ) |
| 52 |
13 45 46 48 51
|
ovmpod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 CharPlyMat 𝑅 ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝐷 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) ) ) |
| 53 |
1 52
|
eqtrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝐶 = ( 𝑚 ∈ 𝐵 ↦ ( 𝐷 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) ) ) |