| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 2 | 1 | a1i | ⊢ ( ⊤  →  ℝ+  ⊆  ℝ ) | 
						
							| 3 |  | 1red | ⊢ ( ⊤  →  1  ∈  ℝ ) | 
						
							| 4 |  | simpr | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ+ ) | 
						
							| 5 | 4 | rpred | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ ) | 
						
							| 6 |  | chpcl | ⊢ ( 𝑥  ∈  ℝ  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 8 | 7 4 | rerpdivcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 9 |  | chpo1ub | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑥 )  /  𝑥 ) )  ∈  𝑂(1) | 
						
							| 10 | 9 | a1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑥 )  /  𝑥 ) )  ∈  𝑂(1) ) | 
						
							| 11 | 8 10 | o1lo1d | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑥 )  /  𝑥 ) )  ∈  ≤𝑂(1) ) | 
						
							| 12 |  | chpcl | ⊢ ( 𝑦  ∈  ℝ  →  ( ψ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 13 | 12 | ad2antrl | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  ( ψ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 14 | 13 | rehalfcld | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  ( ( ψ ‘ 𝑦 )  /  2 )  ∈  ℝ ) | 
						
							| 15 | 5 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 16 |  | chpeq0 | ⊢ ( 𝑥  ∈  ℝ  →  ( ( ψ ‘ 𝑥 )  =  0  ↔  𝑥  <  2 ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( ( ψ ‘ 𝑥 )  =  0  ↔  𝑥  <  2 ) ) | 
						
							| 18 | 17 | biimpar | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑥  <  2 )  →  ( ψ ‘ 𝑥 )  =  0 ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑥  <  2 )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  =  ( 0  /  𝑥 ) ) | 
						
							| 20 | 4 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 21 | 20 | rpcnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 22 | 20 | rpne0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑥  ≠  0 ) | 
						
							| 23 | 21 22 | div0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 0  /  𝑥 )  =  0 ) | 
						
							| 24 | 13 | ad2ant2r | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( ψ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 25 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 26 | 25 | a1i | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  2  ∈  ℝ+ ) | 
						
							| 27 |  | simprll | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 28 |  | chpge0 | ⊢ ( 𝑦  ∈  ℝ  →  0  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  0  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 30 | 24 26 29 | divge0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  0  ≤  ( ( ψ ‘ 𝑦 )  /  2 ) ) | 
						
							| 31 | 23 30 | eqbrtrd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 0  /  𝑥 )  ≤  ( ( ψ ‘ 𝑦 )  /  2 ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑥  <  2 )  →  ( 0  /  𝑥 )  ≤  ( ( ψ ‘ 𝑦 )  /  2 ) ) | 
						
							| 33 | 19 32 | eqbrtrd | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑥  <  2 )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  ( ( ψ ‘ 𝑦 )  /  2 ) ) | 
						
							| 34 | 7 | ad2antrr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  2  ≤  𝑥 )  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 35 | 24 | adantr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  2  ≤  𝑥 )  →  ( ψ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 36 | 25 | a1i | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  2  ≤  𝑥 )  →  2  ∈  ℝ+ ) | 
						
							| 37 | 15 | adantr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  2  ≤  𝑥 )  →  𝑥  ∈  ℝ ) | 
						
							| 38 |  | chpge0 | ⊢ ( 𝑥  ∈  ℝ  →  0  ≤  ( ψ ‘ 𝑥 ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  2  ≤  𝑥 )  →  0  ≤  ( ψ ‘ 𝑥 ) ) | 
						
							| 40 | 27 | adantr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  2  ≤  𝑥 )  →  𝑦  ∈  ℝ ) | 
						
							| 41 |  | simprr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑥  <  𝑦 ) | 
						
							| 42 | 15 27 41 | ltled | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑥  ≤  𝑦 ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  2  ≤  𝑥 )  →  𝑥  ≤  𝑦 ) | 
						
							| 44 |  | chpwordi | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ  ∧  𝑥  ≤  𝑦 )  →  ( ψ ‘ 𝑥 )  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 45 | 37 40 43 44 | syl3anc | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  2  ≤  𝑥 )  →  ( ψ ‘ 𝑥 )  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 46 |  | simpr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  2  ≤  𝑥 )  →  2  ≤  𝑥 ) | 
						
							| 47 | 34 35 36 37 39 45 46 | lediv12ad | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  2  ≤  𝑥 )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  ( ( ψ ‘ 𝑦 )  /  2 ) ) | 
						
							| 48 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 49 | 48 | a1i | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  2  ∈  ℝ ) | 
						
							| 50 | 33 47 15 49 | ltlecasei | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  ( ( ψ ‘ 𝑦 )  /  2 ) ) | 
						
							| 51 | 2 3 8 11 14 50 | lo1bddrp | ⊢ ( ⊤  →  ∃ 𝑐  ∈  ℝ+ ∀ 𝑥  ∈  ℝ+ ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  𝑐 ) | 
						
							| 52 | 51 | mptru | ⊢ ∃ 𝑐  ∈  ℝ+ ∀ 𝑥  ∈  ℝ+ ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  𝑐 | 
						
							| 53 |  | simpr | ⊢ ( ( 𝑐  ∈  ℝ+  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ+ ) | 
						
							| 54 | 53 | rpred | ⊢ ( ( 𝑐  ∈  ℝ+  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ ) | 
						
							| 55 | 54 6 | syl | ⊢ ( ( 𝑐  ∈  ℝ+  ∧  𝑥  ∈  ℝ+ )  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 56 |  | simpl | ⊢ ( ( 𝑐  ∈  ℝ+  ∧  𝑥  ∈  ℝ+ )  →  𝑐  ∈  ℝ+ ) | 
						
							| 57 | 56 | rpred | ⊢ ( ( 𝑐  ∈  ℝ+  ∧  𝑥  ∈  ℝ+ )  →  𝑐  ∈  ℝ ) | 
						
							| 58 | 55 57 53 | ledivmul2d | ⊢ ( ( 𝑐  ∈  ℝ+  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  𝑐  ↔  ( ψ ‘ 𝑥 )  ≤  ( 𝑐  ·  𝑥 ) ) ) | 
						
							| 59 | 58 | ralbidva | ⊢ ( 𝑐  ∈  ℝ+  →  ( ∀ 𝑥  ∈  ℝ+ ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  𝑐  ↔  ∀ 𝑥  ∈  ℝ+ ( ψ ‘ 𝑥 )  ≤  ( 𝑐  ·  𝑥 ) ) ) | 
						
							| 60 | 59 | rexbiia | ⊢ ( ∃ 𝑐  ∈  ℝ+ ∀ 𝑥  ∈  ℝ+ ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  𝑐  ↔  ∃ 𝑐  ∈  ℝ+ ∀ 𝑥  ∈  ℝ+ ( ψ ‘ 𝑥 )  ≤  ( 𝑐  ·  𝑥 ) ) | 
						
							| 61 | 52 60 | mpbi | ⊢ ∃ 𝑐  ∈  ℝ+ ∀ 𝑥  ∈  ℝ+ ( ψ ‘ 𝑥 )  ≤  ( 𝑐  ·  𝑥 ) |