Metamath Proof Explorer


Theorem chpp1

Description: The second Chebyshev function at a successor. (Contributed by Mario Carneiro, 11-Apr-2016)

Ref Expression
Assertion chpp1 ( 𝐴 ∈ ℕ0 → ( ψ ‘ ( 𝐴 + 1 ) ) = ( ( ψ ‘ 𝐴 ) + ( Λ ‘ ( 𝐴 + 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 nn0p1nn ( 𝐴 ∈ ℕ0 → ( 𝐴 + 1 ) ∈ ℕ )
2 nnuz ℕ = ( ℤ ‘ 1 )
3 1 2 eleqtrdi ( 𝐴 ∈ ℕ0 → ( 𝐴 + 1 ) ∈ ( ℤ ‘ 1 ) )
4 elfznn ( 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) → 𝑛 ∈ ℕ )
5 4 adantl ( ( 𝐴 ∈ ℕ0𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ) → 𝑛 ∈ ℕ )
6 vmacl ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ )
7 5 6 syl ( ( 𝐴 ∈ ℕ0𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ )
8 7 recnd ( ( 𝐴 ∈ ℕ0𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ )
9 fveq2 ( 𝑛 = ( 𝐴 + 1 ) → ( Λ ‘ 𝑛 ) = ( Λ ‘ ( 𝐴 + 1 ) ) )
10 3 8 9 fsumm1 ( 𝐴 ∈ ℕ0 → Σ 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ( Λ ‘ 𝑛 ) = ( Σ 𝑛 ∈ ( 1 ... ( ( 𝐴 + 1 ) − 1 ) ) ( Λ ‘ 𝑛 ) + ( Λ ‘ ( 𝐴 + 1 ) ) ) )
11 nn0re ( 𝐴 ∈ ℕ0𝐴 ∈ ℝ )
12 peano2re ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ )
13 chpval ( ( 𝐴 + 1 ) ∈ ℝ → ( ψ ‘ ( 𝐴 + 1 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ( Λ ‘ 𝑛 ) )
14 11 12 13 3syl ( 𝐴 ∈ ℕ0 → ( ψ ‘ ( 𝐴 + 1 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ( Λ ‘ 𝑛 ) )
15 nn0z ( 𝐴 ∈ ℕ0𝐴 ∈ ℤ )
16 15 peano2zd ( 𝐴 ∈ ℕ0 → ( 𝐴 + 1 ) ∈ ℤ )
17 flid ( ( 𝐴 + 1 ) ∈ ℤ → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( 𝐴 + 1 ) )
18 16 17 syl ( 𝐴 ∈ ℕ0 → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( 𝐴 + 1 ) )
19 18 oveq2d ( 𝐴 ∈ ℕ0 → ( 1 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) = ( 1 ... ( 𝐴 + 1 ) ) )
20 19 sumeq1d ( 𝐴 ∈ ℕ0 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ( Λ ‘ 𝑛 ) = Σ 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ( Λ ‘ 𝑛 ) )
21 14 20 eqtrd ( 𝐴 ∈ ℕ0 → ( ψ ‘ ( 𝐴 + 1 ) ) = Σ 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ( Λ ‘ 𝑛 ) )
22 chpval ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) )
23 11 22 syl ( 𝐴 ∈ ℕ0 → ( ψ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) )
24 flid ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 )
25 15 24 syl ( 𝐴 ∈ ℕ0 → ( ⌊ ‘ 𝐴 ) = 𝐴 )
26 nn0cn ( 𝐴 ∈ ℕ0𝐴 ∈ ℂ )
27 ax-1cn 1 ∈ ℂ
28 pncan ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 )
29 26 27 28 sylancl ( 𝐴 ∈ ℕ0 → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 )
30 25 29 eqtr4d ( 𝐴 ∈ ℕ0 → ( ⌊ ‘ 𝐴 ) = ( ( 𝐴 + 1 ) − 1 ) )
31 30 oveq2d ( 𝐴 ∈ ℕ0 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ( 1 ... ( ( 𝐴 + 1 ) − 1 ) ) )
32 31 sumeq1d ( 𝐴 ∈ ℕ0 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) = Σ 𝑛 ∈ ( 1 ... ( ( 𝐴 + 1 ) − 1 ) ) ( Λ ‘ 𝑛 ) )
33 23 32 eqtrd ( 𝐴 ∈ ℕ0 → ( ψ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ( 𝐴 + 1 ) − 1 ) ) ( Λ ‘ 𝑛 ) )
34 33 oveq1d ( 𝐴 ∈ ℕ0 → ( ( ψ ‘ 𝐴 ) + ( Λ ‘ ( 𝐴 + 1 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ( 𝐴 + 1 ) − 1 ) ) ( Λ ‘ 𝑛 ) + ( Λ ‘ ( 𝐴 + 1 ) ) ) )
35 10 21 34 3eqtr4d ( 𝐴 ∈ ℕ0 → ( ψ ‘ ( 𝐴 + 1 ) ) = ( ( ψ ‘ 𝐴 ) + ( Λ ‘ ( 𝐴 + 1 ) ) ) )