Step |
Hyp |
Ref |
Expression |
1 |
|
nn0p1nn |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 + 1 ) ∈ ℕ ) |
2 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
3 |
1 2
|
eleqtrdi |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
4 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) → 𝑛 ∈ ℕ ) |
5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ) → 𝑛 ∈ ℕ ) |
6 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
8 |
7
|
recnd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
9 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝐴 + 1 ) → ( Λ ‘ 𝑛 ) = ( Λ ‘ ( 𝐴 + 1 ) ) ) |
10 |
3 8 9
|
fsumm1 |
⊢ ( 𝐴 ∈ ℕ0 → Σ 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ( Λ ‘ 𝑛 ) = ( Σ 𝑛 ∈ ( 1 ... ( ( 𝐴 + 1 ) − 1 ) ) ( Λ ‘ 𝑛 ) + ( Λ ‘ ( 𝐴 + 1 ) ) ) ) |
11 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
12 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
13 |
|
chpval |
⊢ ( ( 𝐴 + 1 ) ∈ ℝ → ( ψ ‘ ( 𝐴 + 1 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ( Λ ‘ 𝑛 ) ) |
14 |
11 12 13
|
3syl |
⊢ ( 𝐴 ∈ ℕ0 → ( ψ ‘ ( 𝐴 + 1 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ( Λ ‘ 𝑛 ) ) |
15 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
16 |
15
|
peano2zd |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 + 1 ) ∈ ℤ ) |
17 |
|
flid |
⊢ ( ( 𝐴 + 1 ) ∈ ℤ → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( 𝐴 + 1 ) ) |
18 |
16 17
|
syl |
⊢ ( 𝐴 ∈ ℕ0 → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( 𝐴 + 1 ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝐴 ∈ ℕ0 → ( 1 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) = ( 1 ... ( 𝐴 + 1 ) ) ) |
20 |
19
|
sumeq1d |
⊢ ( 𝐴 ∈ ℕ0 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ( Λ ‘ 𝑛 ) = Σ 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ( Λ ‘ 𝑛 ) ) |
21 |
14 20
|
eqtrd |
⊢ ( 𝐴 ∈ ℕ0 → ( ψ ‘ ( 𝐴 + 1 ) ) = Σ 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ( Λ ‘ 𝑛 ) ) |
22 |
|
chpval |
⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) ) |
23 |
11 22
|
syl |
⊢ ( 𝐴 ∈ ℕ0 → ( ψ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) ) |
24 |
|
flid |
⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
25 |
15 24
|
syl |
⊢ ( 𝐴 ∈ ℕ0 → ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
26 |
|
nn0cn |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ ) |
27 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
28 |
|
pncan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
29 |
26 27 28
|
sylancl |
⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
30 |
25 29
|
eqtr4d |
⊢ ( 𝐴 ∈ ℕ0 → ( ⌊ ‘ 𝐴 ) = ( ( 𝐴 + 1 ) − 1 ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝐴 ∈ ℕ0 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ( 1 ... ( ( 𝐴 + 1 ) − 1 ) ) ) |
32 |
31
|
sumeq1d |
⊢ ( 𝐴 ∈ ℕ0 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) = Σ 𝑛 ∈ ( 1 ... ( ( 𝐴 + 1 ) − 1 ) ) ( Λ ‘ 𝑛 ) ) |
33 |
23 32
|
eqtrd |
⊢ ( 𝐴 ∈ ℕ0 → ( ψ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ( 𝐴 + 1 ) − 1 ) ) ( Λ ‘ 𝑛 ) ) |
34 |
33
|
oveq1d |
⊢ ( 𝐴 ∈ ℕ0 → ( ( ψ ‘ 𝐴 ) + ( Λ ‘ ( 𝐴 + 1 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ( 𝐴 + 1 ) − 1 ) ) ( Λ ‘ 𝑛 ) + ( Λ ‘ ( 𝐴 + 1 ) ) ) ) |
35 |
10 21 34
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℕ0 → ( ψ ‘ ( 𝐴 + 1 ) ) = ( ( ψ ‘ 𝐴 ) + ( Λ ‘ ( 𝐴 + 1 ) ) ) ) |