Metamath Proof Explorer


Theorem chprpcl

Description: Closure of the second Chebyshev function in the positive reals. (Contributed by Mario Carneiro, 8-Apr-2016)

Ref Expression
Assertion chprpcl ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( ψ ‘ 𝐴 ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 chpcl ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) ∈ ℝ )
2 1 adantr ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( ψ ‘ 𝐴 ) ∈ ℝ )
3 chtrpcl ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( θ ‘ 𝐴 ) ∈ ℝ+ )
4 chtlepsi ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) ≤ ( ψ ‘ 𝐴 ) )
5 4 adantr ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( θ ‘ 𝐴 ) ≤ ( ψ ‘ 𝐴 ) )
6 2 3 5 rpgecld ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( ψ ‘ 𝐴 ) ∈ ℝ+ )