Metamath Proof Explorer


Theorem chpscmat0

Description: The characteristic polynomial of a (nonempty!) scalar matrix, expressed with its diagonal element. (Contributed by AV, 21-Aug-2019)

Ref Expression
Hypotheses chp0mat.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
chp0mat.p 𝑃 = ( Poly1𝑅 )
chp0mat.a 𝐴 = ( 𝑁 Mat 𝑅 )
chp0mat.x 𝑋 = ( var1𝑅 )
chp0mat.g 𝐺 = ( mulGrp ‘ 𝑃 )
chp0mat.m = ( .g𝐺 )
chpscmat.d 𝐷 = { 𝑚 ∈ ( Base ‘ 𝐴 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∀ 𝑖𝑁𝑗𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g𝑅 ) ) }
chpscmat.s 𝑆 = ( algSc ‘ 𝑃 )
chpscmat.m = ( -g𝑃 )
Assertion chpscmat0 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀𝐷𝐼𝑁 ∧ ∀ 𝑛𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐼 𝑀 𝐼 ) ) ) → ( 𝐶𝑀 ) = ( ( ♯ ‘ 𝑁 ) ( 𝑋 ( 𝑆 ‘ ( 𝐼 𝑀 𝐼 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 chp0mat.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
2 chp0mat.p 𝑃 = ( Poly1𝑅 )
3 chp0mat.a 𝐴 = ( 𝑁 Mat 𝑅 )
4 chp0mat.x 𝑋 = ( var1𝑅 )
5 chp0mat.g 𝐺 = ( mulGrp ‘ 𝑃 )
6 chp0mat.m = ( .g𝐺 )
7 chpscmat.d 𝐷 = { 𝑚 ∈ ( Base ‘ 𝐴 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∀ 𝑖𝑁𝑗𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g𝑅 ) ) }
8 chpscmat.s 𝑆 = ( algSc ‘ 𝑃 )
9 chpscmat.m = ( -g𝑃 )
10 1 2 3 4 5 6 7 8 9 chpscmat ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀𝐷𝐼𝑁 ∧ ∀ 𝑛𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐼 𝑀 𝐼 ) ) ) → ( 𝐶𝑀 ) = ( ( ♯ ‘ 𝑁 ) ( 𝑋 ( 𝑆 ‘ ( 𝐼 𝑀 𝐼 ) ) ) ) )