Description: The characteristic polynomial of a (nonempty!) scalar matrix, expressed with its diagonal element. (Contributed by AV, 21-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | chp0mat.c | ⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) | |
chp0mat.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
chp0mat.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
chp0mat.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
chp0mat.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) | ||
chp0mat.m | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
chpscmat.d | ⊢ 𝐷 = { 𝑚 ∈ ( Base ‘ 𝐴 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑅 ) ) } | ||
chpscmat.s | ⊢ 𝑆 = ( algSc ‘ 𝑃 ) | ||
chpscmat.m | ⊢ − = ( -g ‘ 𝑃 ) | ||
Assertion | chpscmat0 | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐼 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐼 𝑀 𝐼 ) ) ) → ( 𝐶 ‘ 𝑀 ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ ( 𝐼 𝑀 𝐼 ) ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chp0mat.c | ⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) | |
2 | chp0mat.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
3 | chp0mat.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
4 | chp0mat.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
5 | chp0mat.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) | |
6 | chp0mat.m | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
7 | chpscmat.d | ⊢ 𝐷 = { 𝑚 ∈ ( Base ‘ 𝐴 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑅 ) ) } | |
8 | chpscmat.s | ⊢ 𝑆 = ( algSc ‘ 𝑃 ) | |
9 | chpscmat.m | ⊢ − = ( -g ‘ 𝑃 ) | |
10 | 1 2 3 4 5 6 7 8 9 | chpscmat | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐼 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐼 𝑀 𝐼 ) ) ) → ( 𝐶 ‘ 𝑀 ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ ( 𝐼 𝑀 𝐼 ) ) ) ) ) |