| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chp0mat.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
| 2 |
|
chp0mat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
chp0mat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 4 |
|
chp0mat.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 5 |
|
chp0mat.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
| 6 |
|
chp0mat.m |
⊢ ↑ = ( .g ‘ 𝐺 ) |
| 7 |
|
chpscmat.d |
⊢ 𝐷 = { 𝑚 ∈ ( Base ‘ 𝐴 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑅 ) ) } |
| 8 |
|
chpscmat.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
| 9 |
|
chpscmat.m |
⊢ − = ( -g ‘ 𝑃 ) |
| 10 |
|
chpscmatgsum.f |
⊢ 𝐹 = ( .g ‘ 𝑃 ) |
| 11 |
|
chpscmatgsum.h |
⊢ 𝐻 = ( mulGrp ‘ 𝑅 ) |
| 12 |
|
chpscmatgsum.e |
⊢ 𝐸 = ( .g ‘ 𝐻 ) |
| 13 |
|
chpscmatgsum.i |
⊢ 𝐼 = ( invg ‘ 𝑅 ) |
| 14 |
|
chpscmatgsum.s |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
| 15 |
1 2 3 4 5 6 7 8 9
|
chpscmat0 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐶 ‘ 𝑀 ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) |
| 16 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 19 |
4 2 18
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 20 |
17 19
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 22 |
16
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑅 ∈ Ring ) |
| 23 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 24 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 25 |
2
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 26 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 27 |
8 23 24 25 26 18
|
asclf |
⊢ ( 𝑅 ∈ Ring → 𝑆 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ ( Base ‘ 𝑃 ) ) |
| 28 |
22 27
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑆 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ ( Base ‘ 𝑃 ) ) |
| 29 |
|
simpr2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝐽 ∈ 𝑁 ) |
| 30 |
|
elrabi |
⊢ ( 𝑀 ∈ { 𝑚 ∈ ( Base ‘ 𝐴 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑅 ) ) } → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 31 |
30
|
a1d |
⊢ ( 𝑀 ∈ { 𝑚 ∈ ( Base ‘ 𝐴 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑅 ) ) } → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) ) |
| 32 |
31 7
|
eleq2s |
⊢ ( 𝑀 ∈ 𝐷 → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) ) |
| 33 |
32
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) ) |
| 34 |
33
|
impcom |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 35 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 36 |
3 35
|
matecl |
⊢ ( ( 𝐽 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝐽 𝑀 𝐽 ) ∈ ( Base ‘ 𝑅 ) ) |
| 37 |
29 29 34 36
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐽 𝑀 𝐽 ) ∈ ( Base ‘ 𝑅 ) ) |
| 38 |
2
|
ply1sca |
⊢ ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 40 |
39
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 41 |
40
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 42 |
41
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
| 43 |
37 42
|
eleqtrrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐽 𝑀 𝐽 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 44 |
28 43
|
ffvelcdmd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 45 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 46 |
|
eqid |
⊢ ( invg ‘ 𝑃 ) = ( invg ‘ 𝑃 ) |
| 47 |
18 45 46 9
|
grpsubval |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝑃 ) ) → ( 𝑋 − ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) = ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) |
| 48 |
21 44 47
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑋 − ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) = ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) |
| 49 |
17 25
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ LMod ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑃 ∈ LMod ) |
| 51 |
17 24
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ Ring ) |
| 52 |
51
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑃 ∈ Ring ) |
| 53 |
|
eqid |
⊢ ( invg ‘ ( Scalar ‘ 𝑃 ) ) = ( invg ‘ ( Scalar ‘ 𝑃 ) ) |
| 54 |
8 23 26 53 46
|
asclinvg |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑃 ∈ Ring ∧ ( 𝐽 𝑀 𝐽 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) = ( 𝑆 ‘ ( ( invg ‘ ( Scalar ‘ 𝑃 ) ) ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) |
| 55 |
50 52 43 54
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) = ( 𝑆 ‘ ( ( invg ‘ ( Scalar ‘ 𝑃 ) ) ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) |
| 56 |
39
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( invg ‘ 𝑅 ) = ( invg ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 57 |
56
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( invg ‘ 𝑅 ) = ( invg ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 58 |
13 57
|
eqtr2id |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( invg ‘ ( Scalar ‘ 𝑃 ) ) = 𝐼 ) |
| 59 |
58
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝑃 ) ) ‘ ( 𝐽 𝑀 𝐽 ) ) = ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) |
| 60 |
59
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑆 ‘ ( ( invg ‘ ( Scalar ‘ 𝑃 ) ) ‘ ( 𝐽 𝑀 𝐽 ) ) ) = ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) |
| 61 |
55 60
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) = ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) |
| 62 |
61
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) = ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) |
| 63 |
48 62
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑋 − ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) = ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) |
| 64 |
63
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) ) |
| 65 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑅 ∈ CRing ) |
| 66 |
|
hashcl |
⊢ ( 𝑁 ∈ Fin → ( ♯ ‘ 𝑁 ) ∈ ℕ0 ) |
| 67 |
66
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( ♯ ‘ 𝑁 ) ∈ ℕ0 ) |
| 68 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 69 |
16 68
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Grp ) |
| 70 |
69
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑅 ∈ Grp ) |
| 71 |
35 13
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐽 𝑀 𝐽 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 72 |
70 37 71
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 73 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 74 |
2 4 45 73 10 5 6 35 8 11 12
|
lply1binomsc |
⊢ ( ( 𝑅 ∈ CRing ∧ ( ♯ ‘ 𝑁 ) ∈ ℕ0 ∧ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙 ↑ 𝑋 ) ) ) ) ) ) |
| 75 |
65 67 72 74
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙 ↑ 𝑋 ) ) ) ) ) ) |
| 76 |
2
|
ply1assa |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |
| 77 |
76
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ AssAlg ) |
| 78 |
77
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → 𝑃 ∈ AssAlg ) |
| 79 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 80 |
11
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝐻 ∈ Mnd ) |
| 81 |
17 80
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐻 ∈ Mnd ) |
| 82 |
81
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → 𝐻 ∈ Mnd ) |
| 83 |
|
fznn0sub |
⊢ ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) → ( ( ♯ ‘ 𝑁 ) − 𝑙 ) ∈ ℕ0 ) |
| 84 |
83
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ♯ ‘ 𝑁 ) − 𝑙 ) ∈ ℕ0 ) |
| 85 |
11 35
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝐻 ) |
| 86 |
72 85
|
eleqtrdi |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝐻 ) ) |
| 87 |
86
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝐻 ) ) |
| 88 |
79 12 82 84 87
|
mulgnn0cld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ∈ ( Base ‘ 𝐻 ) ) |
| 89 |
40
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
| 90 |
89 85
|
eqtrdi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝐻 ) ) |
| 91 |
90
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝐻 ) ) |
| 92 |
88 91
|
eleqtrrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 93 |
5 18
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 ) |
| 94 |
5
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝐺 ∈ Mnd ) |
| 95 |
16 24 94
|
3syl |
⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Mnd ) |
| 96 |
95
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → 𝐺 ∈ Mnd ) |
| 97 |
|
elfznn0 |
⊢ ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) → 𝑙 ∈ ℕ0 ) |
| 98 |
97
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → 𝑙 ∈ ℕ0 ) |
| 99 |
20
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 100 |
93 6 96 98 99
|
mulgnn0cld |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( 𝑙 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 101 |
100
|
adantlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( 𝑙 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 102 |
8 23 26 18 73 14
|
asclmul1 |
⊢ ( ( 𝑃 ∈ AssAlg ∧ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑙 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙 ↑ 𝑋 ) ) = ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) |
| 103 |
78 92 101 102
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙 ↑ 𝑋 ) ) = ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) |
| 104 |
103
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙 ↑ 𝑋 ) ) ) = ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) |
| 105 |
104
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙 ↑ 𝑋 ) ) ) ) = ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) ) |
| 106 |
105
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙 ↑ 𝑋 ) ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) ) ) |
| 107 |
75 106
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) ) ) |
| 108 |
15 64 107
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) ) ) |