Step |
Hyp |
Ref |
Expression |
1 |
|
chp0mat.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
2 |
|
chp0mat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
chp0mat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
4 |
|
chp0mat.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
5 |
|
chp0mat.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
6 |
|
chp0mat.m |
⊢ ↑ = ( .g ‘ 𝐺 ) |
7 |
|
chpscmat.d |
⊢ 𝐷 = { 𝑚 ∈ ( Base ‘ 𝐴 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑅 ) ) } |
8 |
|
chpscmat.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
9 |
|
chpscmat.m |
⊢ − = ( -g ‘ 𝑃 ) |
10 |
|
chpscmatgsum.f |
⊢ 𝐹 = ( .g ‘ 𝑃 ) |
11 |
|
chpscmatgsum.h |
⊢ 𝐻 = ( mulGrp ‘ 𝑅 ) |
12 |
|
chpscmatgsum.e |
⊢ 𝐸 = ( .g ‘ 𝐻 ) |
13 |
|
chpscmatgsum.i |
⊢ 𝐼 = ( invg ‘ 𝑅 ) |
14 |
|
chpscmatgsum.s |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
15 |
1 2 3 4 5 6 7 8 9
|
chpscmat0 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐶 ‘ 𝑀 ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) |
16 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
17 |
16
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
19 |
4 2 18
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
20 |
17 19
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
22 |
16
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑅 ∈ Ring ) |
23 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
24 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
25 |
2
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
26 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
27 |
8 23 24 25 26 18
|
asclf |
⊢ ( 𝑅 ∈ Ring → 𝑆 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ ( Base ‘ 𝑃 ) ) |
28 |
22 27
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑆 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ ( Base ‘ 𝑃 ) ) |
29 |
|
simpr2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝐽 ∈ 𝑁 ) |
30 |
|
elrabi |
⊢ ( 𝑀 ∈ { 𝑚 ∈ ( Base ‘ 𝐴 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑅 ) ) } → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
31 |
30
|
a1d |
⊢ ( 𝑀 ∈ { 𝑚 ∈ ( Base ‘ 𝐴 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑅 ) ) } → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) ) |
32 |
31 7
|
eleq2s |
⊢ ( 𝑀 ∈ 𝐷 → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) ) |
33 |
32
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) ) |
34 |
33
|
impcom |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
35 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
36 |
3 35
|
matecl |
⊢ ( ( 𝐽 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝐽 𝑀 𝐽 ) ∈ ( Base ‘ 𝑅 ) ) |
37 |
29 29 34 36
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐽 𝑀 𝐽 ) ∈ ( Base ‘ 𝑅 ) ) |
38 |
2
|
ply1sca |
⊢ ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
39 |
38
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
40 |
39
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
42 |
41
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
43 |
37 42
|
eleqtrrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐽 𝑀 𝐽 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
44 |
28 43
|
ffvelrnd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝑃 ) ) |
45 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
46 |
|
eqid |
⊢ ( invg ‘ 𝑃 ) = ( invg ‘ 𝑃 ) |
47 |
18 45 46 9
|
grpsubval |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝑃 ) ) → ( 𝑋 − ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) = ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) |
48 |
21 44 47
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑋 − ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) = ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) |
49 |
17 25
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ LMod ) |
50 |
49
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑃 ∈ LMod ) |
51 |
17 24
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ Ring ) |
52 |
51
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑃 ∈ Ring ) |
53 |
|
eqid |
⊢ ( invg ‘ ( Scalar ‘ 𝑃 ) ) = ( invg ‘ ( Scalar ‘ 𝑃 ) ) |
54 |
8 23 26 53 46
|
asclinvg |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑃 ∈ Ring ∧ ( 𝐽 𝑀 𝐽 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) = ( 𝑆 ‘ ( ( invg ‘ ( Scalar ‘ 𝑃 ) ) ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) |
55 |
50 52 43 54
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) = ( 𝑆 ‘ ( ( invg ‘ ( Scalar ‘ 𝑃 ) ) ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) |
56 |
39
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( invg ‘ 𝑅 ) = ( invg ‘ ( Scalar ‘ 𝑃 ) ) ) |
57 |
56
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( invg ‘ 𝑅 ) = ( invg ‘ ( Scalar ‘ 𝑃 ) ) ) |
58 |
13 57
|
eqtr2id |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( invg ‘ ( Scalar ‘ 𝑃 ) ) = 𝐼 ) |
59 |
58
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝑃 ) ) ‘ ( 𝐽 𝑀 𝐽 ) ) = ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) |
60 |
59
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑆 ‘ ( ( invg ‘ ( Scalar ‘ 𝑃 ) ) ‘ ( 𝐽 𝑀 𝐽 ) ) ) = ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) |
61 |
55 60
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) = ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) |
62 |
61
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) = ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) |
63 |
48 62
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑋 − ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) = ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) |
64 |
63
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) ) |
65 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑅 ∈ CRing ) |
66 |
|
hashcl |
⊢ ( 𝑁 ∈ Fin → ( ♯ ‘ 𝑁 ) ∈ ℕ0 ) |
67 |
66
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( ♯ ‘ 𝑁 ) ∈ ℕ0 ) |
68 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
69 |
16 68
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Grp ) |
70 |
69
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → 𝑅 ∈ Grp ) |
71 |
35 13
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐽 𝑀 𝐽 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝑅 ) ) |
72 |
70 37 71
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝑅 ) ) |
73 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
74 |
2 4 45 73 10 5 6 35 8 11 12
|
lply1binomsc |
⊢ ( ( 𝑅 ∈ CRing ∧ ( ♯ ‘ 𝑁 ) ∈ ℕ0 ∧ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙 ↑ 𝑋 ) ) ) ) ) ) |
75 |
65 67 72 74
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙 ↑ 𝑋 ) ) ) ) ) ) |
76 |
2
|
ply1assa |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |
77 |
76
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ AssAlg ) |
78 |
77
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → 𝑃 ∈ AssAlg ) |
79 |
11
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝐻 ∈ Mnd ) |
80 |
17 79
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐻 ∈ Mnd ) |
81 |
80
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → 𝐻 ∈ Mnd ) |
82 |
|
fznn0sub |
⊢ ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) → ( ( ♯ ‘ 𝑁 ) − 𝑙 ) ∈ ℕ0 ) |
83 |
82
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ♯ ‘ 𝑁 ) − 𝑙 ) ∈ ℕ0 ) |
84 |
11 35
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝐻 ) |
85 |
72 84
|
eleqtrdi |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝐻 ) ) |
86 |
85
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝐻 ) ) |
87 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
88 |
87 12
|
mulgnn0cl |
⊢ ( ( 𝐻 ∈ Mnd ∧ ( ( ♯ ‘ 𝑁 ) − 𝑙 ) ∈ ℕ0 ∧ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝐻 ) ) → ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ∈ ( Base ‘ 𝐻 ) ) |
89 |
81 83 86 88
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ∈ ( Base ‘ 𝐻 ) ) |
90 |
40
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
91 |
90 84
|
eqtrdi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝐻 ) ) |
92 |
91
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝐻 ) ) |
93 |
89 92
|
eleqtrrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
94 |
5
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝐺 ∈ Mnd ) |
95 |
16 24 94
|
3syl |
⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Mnd ) |
96 |
95
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → 𝐺 ∈ Mnd ) |
97 |
|
elfznn0 |
⊢ ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) → 𝑙 ∈ ℕ0 ) |
98 |
97
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → 𝑙 ∈ ℕ0 ) |
99 |
20
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
100 |
5 18
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 ) |
101 |
100 6
|
mulgnn0cl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑙 ∈ ℕ0 ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑙 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
102 |
96 98 99 101
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( 𝑙 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
103 |
102
|
adantlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( 𝑙 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
104 |
8 23 26 18 73 14
|
asclmul1 |
⊢ ( ( 𝑃 ∈ AssAlg ∧ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑙 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙 ↑ 𝑋 ) ) = ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) |
105 |
78 93 103 104
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙 ↑ 𝑋 ) ) = ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) |
106 |
105
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙 ↑ 𝑋 ) ) ) = ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) |
107 |
106
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙 ↑ 𝑋 ) ) ) ) = ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) ) |
108 |
107
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙 ↑ 𝑋 ) ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) ) ) |
109 |
75 108
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) ) ) |
110 |
15 64 109
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) ) ) |