Metamath Proof Explorer


Theorem chpssati

Description: Two Hilbert lattice elements in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 𝐴C
chpssat.2 𝐵C
Assertion chpssati ( 𝐴𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )

Proof

Step Hyp Ref Expression
1 chpssat.1 𝐴C
2 chpssat.2 𝐵C
3 dfpss3 ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐵𝐴 ) )
4 3 simprbi ( 𝐴𝐵 → ¬ 𝐵𝐴 )
5 iman ( ( 𝑥𝐵𝑥𝐴 ) ↔ ¬ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )
6 5 ralbii ( ∀ 𝑥 ∈ HAtoms ( 𝑥𝐵𝑥𝐴 ) ↔ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )
7 ss2rab ( { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } ↔ ∀ 𝑥 ∈ HAtoms ( 𝑥𝐵𝑥𝐴 ) )
8 ssrab2 { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ⊆ HAtoms
9 atssch HAtoms ⊆ C
10 8 9 sstri { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ⊆ C
11 ssrab2 { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } ⊆ HAtoms
12 11 9 sstri { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } ⊆ C
13 chsupss ( ( { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ⊆ C ∧ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } ⊆ C ) → ( { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } → ( ‘ { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ) ⊆ ( ‘ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } ) ) )
14 10 12 13 mp2an ( { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } → ( ‘ { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ) ⊆ ( ‘ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } ) )
15 2 hatomistici 𝐵 = ( ‘ { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } )
16 1 hatomistici 𝐴 = ( ‘ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } )
17 14 15 16 3sstr4g ( { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } → 𝐵𝐴 )
18 7 17 sylbir ( ∀ 𝑥 ∈ HAtoms ( 𝑥𝐵𝑥𝐴 ) → 𝐵𝐴 )
19 6 18 sylbir ( ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) → 𝐵𝐴 )
20 19 con3i ( ¬ 𝐵𝐴 → ¬ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )
21 dfrex2 ( ∃ 𝑥 ∈ HAtoms ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) ↔ ¬ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )
22 20 21 sylibr ( ¬ 𝐵𝐴 → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )
23 4 22 syl ( 𝐴𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )