| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpssat.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | chpssat.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | dfpss3 | ⊢ ( 𝐴  ⊊  𝐵  ↔  ( 𝐴  ⊆  𝐵  ∧  ¬  𝐵  ⊆  𝐴 ) ) | 
						
							| 4 | 3 | simprbi | ⊢ ( 𝐴  ⊊  𝐵  →  ¬  𝐵  ⊆  𝐴 ) | 
						
							| 5 |  | iman | ⊢ ( ( 𝑥  ⊆  𝐵  →  𝑥  ⊆  𝐴 )  ↔  ¬  ( 𝑥  ⊆  𝐵  ∧  ¬  𝑥  ⊆  𝐴 ) ) | 
						
							| 6 | 5 | ralbii | ⊢ ( ∀ 𝑥  ∈  HAtoms ( 𝑥  ⊆  𝐵  →  𝑥  ⊆  𝐴 )  ↔  ∀ 𝑥  ∈  HAtoms ¬  ( 𝑥  ⊆  𝐵  ∧  ¬  𝑥  ⊆  𝐴 ) ) | 
						
							| 7 |  | ss2rab | ⊢ ( { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐵 }  ⊆  { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐴 }  ↔  ∀ 𝑥  ∈  HAtoms ( 𝑥  ⊆  𝐵  →  𝑥  ⊆  𝐴 ) ) | 
						
							| 8 |  | ssrab2 | ⊢ { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐵 }  ⊆  HAtoms | 
						
							| 9 |  | atssch | ⊢ HAtoms  ⊆   Cℋ | 
						
							| 10 | 8 9 | sstri | ⊢ { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐵 }  ⊆   Cℋ | 
						
							| 11 |  | ssrab2 | ⊢ { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐴 }  ⊆  HAtoms | 
						
							| 12 | 11 9 | sstri | ⊢ { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐴 }  ⊆   Cℋ | 
						
							| 13 |  | chsupss | ⊢ ( ( { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐵 }  ⊆   Cℋ   ∧  { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐴 }  ⊆   Cℋ  )  →  ( { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐵 }  ⊆  { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐴 }  →  (  ∨ℋ  ‘ { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐵 } )  ⊆  (  ∨ℋ  ‘ { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐴 } ) ) ) | 
						
							| 14 | 10 12 13 | mp2an | ⊢ ( { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐵 }  ⊆  { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐴 }  →  (  ∨ℋ  ‘ { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐵 } )  ⊆  (  ∨ℋ  ‘ { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐴 } ) ) | 
						
							| 15 | 2 | hatomistici | ⊢ 𝐵  =  (  ∨ℋ  ‘ { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐵 } ) | 
						
							| 16 | 1 | hatomistici | ⊢ 𝐴  =  (  ∨ℋ  ‘ { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐴 } ) | 
						
							| 17 | 14 15 16 | 3sstr4g | ⊢ ( { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐵 }  ⊆  { 𝑥  ∈  HAtoms  ∣  𝑥  ⊆  𝐴 }  →  𝐵  ⊆  𝐴 ) | 
						
							| 18 | 7 17 | sylbir | ⊢ ( ∀ 𝑥  ∈  HAtoms ( 𝑥  ⊆  𝐵  →  𝑥  ⊆  𝐴 )  →  𝐵  ⊆  𝐴 ) | 
						
							| 19 | 6 18 | sylbir | ⊢ ( ∀ 𝑥  ∈  HAtoms ¬  ( 𝑥  ⊆  𝐵  ∧  ¬  𝑥  ⊆  𝐴 )  →  𝐵  ⊆  𝐴 ) | 
						
							| 20 | 19 | con3i | ⊢ ( ¬  𝐵  ⊆  𝐴  →  ¬  ∀ 𝑥  ∈  HAtoms ¬  ( 𝑥  ⊆  𝐵  ∧  ¬  𝑥  ⊆  𝐴 ) ) | 
						
							| 21 |  | dfrex2 | ⊢ ( ∃ 𝑥  ∈  HAtoms ( 𝑥  ⊆  𝐵  ∧  ¬  𝑥  ⊆  𝐴 )  ↔  ¬  ∀ 𝑥  ∈  HAtoms ¬  ( 𝑥  ⊆  𝐵  ∧  ¬  𝑥  ⊆  𝐴 ) ) | 
						
							| 22 | 20 21 | sylibr | ⊢ ( ¬  𝐵  ⊆  𝐴  →  ∃ 𝑥  ∈  HAtoms ( 𝑥  ⊆  𝐵  ∧  ¬  𝑥  ⊆  𝐴 ) ) | 
						
							| 23 | 4 22 | syl | ⊢ ( 𝐴  ⊊  𝐵  →  ∃ 𝑥  ∈  HAtoms ( 𝑥  ⊆  𝐵  ∧  ¬  𝑥  ⊆  𝐴 ) ) |