| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							choccl | 
							⊢ ( 𝐵  ∈   Cℋ   →  ( ⊥ ‘ 𝐵 )  ∈   Cℋ  )  | 
						
						
							| 2 | 
							
								
							 | 
							chpsscon3 | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  ( ⊥ ‘ 𝐵 )  ∈   Cℋ  )  →  ( 𝐴  ⊊  ( ⊥ ‘ 𝐵 )  ↔  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) )  ⊊  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylan2 | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ⊊  ( ⊥ ‘ 𝐵 )  ↔  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) )  ⊊  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							ococ | 
							⊢ ( 𝐵  ∈   Cℋ   →  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) )  =  𝐵 )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) )  =  𝐵 )  | 
						
						
							| 6 | 
							
								5
							 | 
							psseq1d | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) )  ⊊  ( ⊥ ‘ 𝐴 )  ↔  𝐵  ⊊  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							bitrd | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ⊊  ( ⊥ ‘ 𝐵 )  ↔  𝐵  ⊊  ( ⊥ ‘ 𝐴 ) ) )  |