Metamath Proof Explorer


Theorem chpvalz

Description: Value of the second Chebyshev function, or summatory of the von Mangoldt function. (Contributed by Thierry Arnoux, 28-Dec-2021)

Ref Expression
Assertion chpvalz ( 𝑁 ∈ ℤ → ( ψ ‘ 𝑁 ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑛 ) )

Proof

Step Hyp Ref Expression
1 zre ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ )
2 chpval ( 𝑁 ∈ ℝ → ( ψ ‘ 𝑁 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑁 ) ) ( Λ ‘ 𝑛 ) )
3 1 2 syl ( 𝑁 ∈ ℤ → ( ψ ‘ 𝑁 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑁 ) ) ( Λ ‘ 𝑛 ) )
4 flid ( 𝑁 ∈ ℤ → ( ⌊ ‘ 𝑁 ) = 𝑁 )
5 4 oveq2d ( 𝑁 ∈ ℤ → ( 1 ... ( ⌊ ‘ 𝑁 ) ) = ( 1 ... 𝑁 ) )
6 5 sumeq1d ( 𝑁 ∈ ℤ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑁 ) ) ( Λ ‘ 𝑛 ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑛 ) )
7 3 6 eqtrd ( 𝑁 ∈ ℤ → ( ψ ‘ 𝑁 ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑛 ) )