Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 1 ... ( ⌊ ‘ 𝐵 ) ) ∈ Fin ) |
2 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐵 ) ) → 𝑛 ∈ ℕ ) |
3 |
2
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ) → 𝑛 ∈ ℕ ) |
4 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
5 |
3 4
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
6 |
|
vmage0 |
⊢ ( 𝑛 ∈ ℕ → 0 ≤ ( Λ ‘ 𝑛 ) ) |
7 |
3 6
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ) → 0 ≤ ( Λ ‘ 𝑛 ) ) |
8 |
|
flword2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝐴 ) ) ) |
9 |
|
fzss2 |
⊢ ( ( ⌊ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝐴 ) ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ) |
11 |
1 5 7 10
|
fsumless |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ( Λ ‘ 𝑛 ) ) |
12 |
|
chpval |
⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ψ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) ) |
14 |
|
chpval |
⊢ ( 𝐵 ∈ ℝ → ( ψ ‘ 𝐵 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ( Λ ‘ 𝑛 ) ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ψ ‘ 𝐵 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ( Λ ‘ 𝑛 ) ) |
16 |
11 13 15
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ψ ‘ 𝐴 ) ≤ ( ψ ‘ 𝐵 ) ) |