Metamath Proof Explorer


Theorem chrcl

Description: Closure of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypothesis chrcl.c 𝐶 = ( chr ‘ 𝑅 )
Assertion chrcl ( 𝑅 ∈ Ring → 𝐶 ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 chrcl.c 𝐶 = ( chr ‘ 𝑅 )
2 eqid ( od ‘ 𝑅 ) = ( od ‘ 𝑅 )
3 eqid ( 1r𝑅 ) = ( 1r𝑅 )
4 2 3 1 chrval ( ( od ‘ 𝑅 ) ‘ ( 1r𝑅 ) ) = 𝐶
5 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
6 5 3 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
7 5 2 odcl ( ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) → ( ( od ‘ 𝑅 ) ‘ ( 1r𝑅 ) ) ∈ ℕ0 )
8 6 7 syl ( 𝑅 ∈ Ring → ( ( od ‘ 𝑅 ) ‘ ( 1r𝑅 ) ) ∈ ℕ0 )
9 4 8 eqeltrrid ( 𝑅 ∈ Ring → 𝐶 ∈ ℕ0 )