Description: Closure of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | chrcl.c | ⊢ 𝐶 = ( chr ‘ 𝑅 ) | |
| Assertion | chrcl | ⊢ ( 𝑅 ∈ Ring → 𝐶 ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chrcl.c | ⊢ 𝐶 = ( chr ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( od ‘ 𝑅 ) = ( od ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 4 | 2 3 1 | chrval | ⊢ ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = 𝐶 |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | 5 3 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 7 | 5 2 | odcl | ⊢ ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) → ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ℕ0 ) |
| 8 | 6 7 | syl | ⊢ ( 𝑅 ∈ Ring → ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ℕ0 ) |
| 9 | 4 8 | eqeltrrid | ⊢ ( 𝑅 ∈ Ring → 𝐶 ∈ ℕ0 ) |