Description: Closure of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | chrcl.c | ⊢ 𝐶 = ( chr ‘ 𝑅 ) | |
Assertion | chrcl | ⊢ ( 𝑅 ∈ Ring → 𝐶 ∈ ℕ0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chrcl.c | ⊢ 𝐶 = ( chr ‘ 𝑅 ) | |
2 | eqid | ⊢ ( od ‘ 𝑅 ) = ( od ‘ 𝑅 ) | |
3 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
4 | 2 3 1 | chrval | ⊢ ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = 𝐶 |
5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
6 | 5 3 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
7 | 5 2 | odcl | ⊢ ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) → ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ℕ0 ) |
8 | 6 7 | syl | ⊢ ( 𝑅 ∈ Ring → ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ℕ0 ) |
9 | 4 8 | eqeltrrid | ⊢ ( 𝑅 ∈ Ring → 𝐶 ∈ ℕ0 ) |