Metamath Proof Explorer


Theorem chrdvds

Description: The ZZ ring homomorphism is zero only at multiples of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses chrcl.c 𝐶 = ( chr ‘ 𝑅 )
chrid.l 𝐿 = ( ℤRHom ‘ 𝑅 )
chrid.z 0 = ( 0g𝑅 )
Assertion chrdvds ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐶𝑁 ↔ ( 𝐿𝑁 ) = 0 ) )

Proof

Step Hyp Ref Expression
1 chrcl.c 𝐶 = ( chr ‘ 𝑅 )
2 chrid.l 𝐿 = ( ℤRHom ‘ 𝑅 )
3 chrid.z 0 = ( 0g𝑅 )
4 eqid ( od ‘ 𝑅 ) = ( od ‘ 𝑅 )
5 eqid ( 1r𝑅 ) = ( 1r𝑅 )
6 4 5 1 chrval ( ( od ‘ 𝑅 ) ‘ ( 1r𝑅 ) ) = 𝐶
7 6 breq1i ( ( ( od ‘ 𝑅 ) ‘ ( 1r𝑅 ) ) ∥ 𝑁𝐶𝑁 )
8 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
9 8 adantr ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → 𝑅 ∈ Grp )
10 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
11 10 5 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
12 11 adantr ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
13 simpr ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ )
14 eqid ( .g𝑅 ) = ( .g𝑅 )
15 10 4 14 3 oddvds ( ( 𝑅 ∈ Grp ∧ ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑁 ∈ ℤ ) → ( ( ( od ‘ 𝑅 ) ‘ ( 1r𝑅 ) ) ∥ 𝑁 ↔ ( 𝑁 ( .g𝑅 ) ( 1r𝑅 ) ) = 0 ) )
16 9 12 13 15 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( ( ( od ‘ 𝑅 ) ‘ ( 1r𝑅 ) ) ∥ 𝑁 ↔ ( 𝑁 ( .g𝑅 ) ( 1r𝑅 ) ) = 0 ) )
17 7 16 bitr3id ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐶𝑁 ↔ ( 𝑁 ( .g𝑅 ) ( 1r𝑅 ) ) = 0 ) )
18 2 14 5 zrhmulg ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐿𝑁 ) = ( 𝑁 ( .g𝑅 ) ( 1r𝑅 ) ) )
19 18 eqeq1d ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( ( 𝐿𝑁 ) = 0 ↔ ( 𝑁 ( .g𝑅 ) ( 1r𝑅 ) ) = 0 ) )
20 17 19 bitr4d ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐶𝑁 ↔ ( 𝐿𝑁 ) = 0 ) )