Step |
Hyp |
Ref |
Expression |
1 |
|
chrcl.c |
⊢ 𝐶 = ( chr ‘ 𝑅 ) |
2 |
|
chrid.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
3 |
|
chrid.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( od ‘ 𝑅 ) = ( od ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
6 |
4 5 1
|
chrval |
⊢ ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = 𝐶 |
7 |
6
|
breq1i |
⊢ ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∥ 𝑁 ↔ 𝐶 ∥ 𝑁 ) |
8 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
9 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → 𝑅 ∈ Grp ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
11 |
10 5
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
13 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
14 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
15 |
10 4 14 3
|
oddvds |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑁 ∈ ℤ ) → ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 0 ) ) |
16 |
9 12 13 15
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 0 ) ) |
17 |
7 16
|
bitr3id |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐶 ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 0 ) ) |
18 |
2 14 5
|
zrhmulg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐿 ‘ 𝑁 ) = ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
19 |
18
|
eqeq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( ( 𝐿 ‘ 𝑁 ) = 0 ↔ ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 0 ) ) |
20 |
17 19
|
bitr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐶 ∥ 𝑁 ↔ ( 𝐿 ‘ 𝑁 ) = 0 ) ) |