| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sseq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ⊆ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ) ) |
| 2 |
1
|
notbid |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ¬ 𝐴 ⊆ 𝐵 ↔ ¬ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ) ) |
| 3 |
|
sseq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) |
| 4 |
3
|
anbi1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ↔ ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ) |
| 5 |
4
|
rexbidv |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ) |
| 6 |
2 5
|
bibi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ↔ ( ¬ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ) ) |
| 7 |
|
sseq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 8 |
7
|
notbid |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ¬ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ↔ ¬ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 9 |
|
sseq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( 𝑥 ⊆ 𝐵 ↔ 𝑥 ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 10 |
9
|
notbid |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ¬ 𝑥 ⊆ 𝐵 ↔ ¬ 𝑥 ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 11 |
10
|
anbi2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ 𝐵 ) ↔ ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) ) |
| 12 |
11
|
rexbidv |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ 𝐵 ) ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) ) |
| 13 |
8 12
|
bibi12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( ¬ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ↔ ( ¬ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) ) ) |
| 14 |
|
ifchhv |
⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∈ Cℋ |
| 15 |
|
ifchhv |
⊢ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∈ Cℋ |
| 16 |
14 15
|
chrelat2i |
⊢ ( ¬ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 17 |
6 13 16
|
dedth2h |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ) |