| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							chrelat2 | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ¬  𝐴  ⊆  𝐵  ↔  ∃ 𝑥  ∈  HAtoms ( 𝑥  ⊆  𝐴  ∧  ¬  𝑥  ⊆  𝐵 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dfrex2 | 
							⊢ ( ∃ 𝑥  ∈  HAtoms ( 𝑥  ⊆  𝐴  ∧  ¬  𝑥  ⊆  𝐵 )  ↔  ¬  ∀ 𝑥  ∈  HAtoms ¬  ( 𝑥  ⊆  𝐴  ∧  ¬  𝑥  ⊆  𝐵 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							bitrdi | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ¬  𝐴  ⊆  𝐵  ↔  ¬  ∀ 𝑥  ∈  HAtoms ¬  ( 𝑥  ⊆  𝐴  ∧  ¬  𝑥  ⊆  𝐵 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							con4bid | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ⊆  𝐵  ↔  ∀ 𝑥  ∈  HAtoms ¬  ( 𝑥  ⊆  𝐴  ∧  ¬  𝑥  ⊆  𝐵 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							iman | 
							⊢ ( ( 𝑥  ⊆  𝐴  →  𝑥  ⊆  𝐵 )  ↔  ¬  ( 𝑥  ⊆  𝐴  ∧  ¬  𝑥  ⊆  𝐵 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							ralbii | 
							⊢ ( ∀ 𝑥  ∈  HAtoms ( 𝑥  ⊆  𝐴  →  𝑥  ⊆  𝐵 )  ↔  ∀ 𝑥  ∈  HAtoms ¬  ( 𝑥  ⊆  𝐴  ∧  ¬  𝑥  ⊆  𝐵 ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							bitr4di | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ⊆  𝐵  ↔  ∀ 𝑥  ∈  HAtoms ( 𝑥  ⊆  𝐴  →  𝑥  ⊆  𝐵 ) ) )  |