| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpssat.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | chpssat.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 | 1 2 | chpssati | ⊢ ( 𝐴  ⊊  𝐵  →  ∃ 𝑥  ∈  HAtoms ( 𝑥  ⊆  𝐵  ∧  ¬  𝑥  ⊆  𝐴 ) ) | 
						
							| 4 |  | ancom | ⊢ ( ( 𝑥  ⊆  𝐵  ∧  ¬  𝑥  ⊆  𝐴 )  ↔  ( ¬  𝑥  ⊆  𝐴  ∧  𝑥  ⊆  𝐵 ) ) | 
						
							| 5 |  | pssss | ⊢ ( 𝐴  ⊊  𝐵  →  𝐴  ⊆  𝐵 ) | 
						
							| 6 |  | atelch | ⊢ ( 𝑥  ∈  HAtoms  →  𝑥  ∈   Cℋ  ) | 
						
							| 7 |  | chnle | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝑥  ∈   Cℋ  )  →  ( ¬  𝑥  ⊆  𝐴  ↔  𝐴  ⊊  ( 𝐴  ∨ℋ  𝑥 ) ) ) | 
						
							| 8 | 1 7 | mpan | ⊢ ( 𝑥  ∈   Cℋ   →  ( ¬  𝑥  ⊆  𝐴  ↔  𝐴  ⊊  ( 𝐴  ∨ℋ  𝑥 ) ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝑥  ∈   Cℋ  )  →  ( ¬  𝑥  ⊆  𝐴  ↔  𝐴  ⊊  ( 𝐴  ∨ℋ  𝑥 ) ) ) | 
						
							| 10 |  | ibar | ⊢ ( 𝐴  ⊆  𝐵  →  ( 𝑥  ⊆  𝐵  ↔  ( 𝐴  ⊆  𝐵  ∧  𝑥  ⊆  𝐵 ) ) ) | 
						
							| 11 |  | chlub | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝑥  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ( 𝐴  ⊆  𝐵  ∧  𝑥  ⊆  𝐵 )  ↔  ( 𝐴  ∨ℋ  𝑥 )  ⊆  𝐵 ) ) | 
						
							| 12 | 1 2 11 | mp3an13 | ⊢ ( 𝑥  ∈   Cℋ   →  ( ( 𝐴  ⊆  𝐵  ∧  𝑥  ⊆  𝐵 )  ↔  ( 𝐴  ∨ℋ  𝑥 )  ⊆  𝐵 ) ) | 
						
							| 13 | 10 12 | sylan9bb | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝑥  ∈   Cℋ  )  →  ( 𝑥  ⊆  𝐵  ↔  ( 𝐴  ∨ℋ  𝑥 )  ⊆  𝐵 ) ) | 
						
							| 14 | 9 13 | anbi12d | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝑥  ∈   Cℋ  )  →  ( ( ¬  𝑥  ⊆  𝐴  ∧  𝑥  ⊆  𝐵 )  ↔  ( 𝐴  ⊊  ( 𝐴  ∨ℋ  𝑥 )  ∧  ( 𝐴  ∨ℋ  𝑥 )  ⊆  𝐵 ) ) ) | 
						
							| 15 | 5 6 14 | syl2an | ⊢ ( ( 𝐴  ⊊  𝐵  ∧  𝑥  ∈  HAtoms )  →  ( ( ¬  𝑥  ⊆  𝐴  ∧  𝑥  ⊆  𝐵 )  ↔  ( 𝐴  ⊊  ( 𝐴  ∨ℋ  𝑥 )  ∧  ( 𝐴  ∨ℋ  𝑥 )  ⊆  𝐵 ) ) ) | 
						
							| 16 | 4 15 | bitrid | ⊢ ( ( 𝐴  ⊊  𝐵  ∧  𝑥  ∈  HAtoms )  →  ( ( 𝑥  ⊆  𝐵  ∧  ¬  𝑥  ⊆  𝐴 )  ↔  ( 𝐴  ⊊  ( 𝐴  ∨ℋ  𝑥 )  ∧  ( 𝐴  ∨ℋ  𝑥 )  ⊆  𝐵 ) ) ) | 
						
							| 17 | 16 | rexbidva | ⊢ ( 𝐴  ⊊  𝐵  →  ( ∃ 𝑥  ∈  HAtoms ( 𝑥  ⊆  𝐵  ∧  ¬  𝑥  ⊆  𝐴 )  ↔  ∃ 𝑥  ∈  HAtoms ( 𝐴  ⊊  ( 𝐴  ∨ℋ  𝑥 )  ∧  ( 𝐴  ∨ℋ  𝑥 )  ⊆  𝐵 ) ) ) | 
						
							| 18 | 3 17 | mpbid | ⊢ ( 𝐴  ⊊  𝐵  →  ∃ 𝑥  ∈  HAtoms ( 𝐴  ⊊  ( 𝐴  ∨ℋ  𝑥 )  ∧  ( 𝐴  ∨ℋ  𝑥 )  ⊆  𝐵 ) ) |