Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
3 |
1 2
|
isnzr |
⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
4 |
3
|
baib |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 ∈ NzRing ↔ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
5 |
|
1z |
⊢ 1 ∈ ℤ |
6 |
|
eqid |
⊢ ( chr ‘ 𝑅 ) = ( chr ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
8 |
6 7 2
|
chrdvds |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ ℤ ) → ( ( chr ‘ 𝑅 ) ∥ 1 ↔ ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = ( 0g ‘ 𝑅 ) ) ) |
9 |
5 8
|
mpan2 |
⊢ ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) ∥ 1 ↔ ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = ( 0g ‘ 𝑅 ) ) ) |
10 |
6
|
chrcl |
⊢ ( 𝑅 ∈ Ring → ( chr ‘ 𝑅 ) ∈ ℕ0 ) |
11 |
|
dvds1 |
⊢ ( ( chr ‘ 𝑅 ) ∈ ℕ0 → ( ( chr ‘ 𝑅 ) ∥ 1 ↔ ( chr ‘ 𝑅 ) = 1 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) ∥ 1 ↔ ( chr ‘ 𝑅 ) = 1 ) ) |
13 |
7 1
|
zrh1 |
⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑅 ∈ Ring → ( ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = ( 0g ‘ 𝑅 ) ↔ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
15 |
9 12 14
|
3bitr3d |
⊢ ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) = 1 ↔ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
16 |
15
|
necon3bid |
⊢ ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) ≠ 1 ↔ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
17 |
4 16
|
bitr4d |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 ∈ NzRing ↔ ( chr ‘ 𝑅 ) ≠ 1 ) ) |