| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rhmrcl1 | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑅  ∈  Ring )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( ℤRHom ‘ 𝑅 )  =  ( ℤRHom ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								2
							 | 
							zrhrhm | 
							⊢ ( 𝑅  ∈  Ring  →  ( ℤRHom ‘ 𝑅 )  ∈  ( ℤring  RingHom  𝑅 ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							syl | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( ℤRHom ‘ 𝑅 )  ∈  ( ℤring  RingHom  𝑅 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							zringbas | 
							⊢ ℤ  =  ( Base ‘ ℤring )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							rhmf | 
							⊢ ( ( ℤRHom ‘ 𝑅 )  ∈  ( ℤring  RingHom  𝑅 )  →  ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							ffn | 
							⊢ ( ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 )  →  ( ℤRHom ‘ 𝑅 )  Fn  ℤ )  | 
						
						
							| 9 | 
							
								4 7 8
							 | 
							3syl | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( ℤRHom ‘ 𝑅 )  Fn  ℤ )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( chr ‘ 𝑅 )  =  ( chr ‘ 𝑅 )  | 
						
						
							| 11 | 
							
								10
							 | 
							chrcl | 
							⊢ ( 𝑅  ∈  Ring  →  ( chr ‘ 𝑅 )  ∈  ℕ0 )  | 
						
						
							| 12 | 
							
								
							 | 
							nn0z | 
							⊢ ( ( chr ‘ 𝑅 )  ∈  ℕ0  →  ( chr ‘ 𝑅 )  ∈  ℤ )  | 
						
						
							| 13 | 
							
								1 11 12
							 | 
							3syl | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( chr ‘ 𝑅 )  ∈  ℤ )  | 
						
						
							| 14 | 
							
								
							 | 
							fvco2 | 
							⊢ ( ( ( ℤRHom ‘ 𝑅 )  Fn  ℤ  ∧  ( chr ‘ 𝑅 )  ∈  ℤ )  →  ( ( 𝐹  ∘  ( ℤRHom ‘ 𝑅 ) ) ‘ ( chr ‘ 𝑅 ) )  =  ( 𝐹 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( chr ‘ 𝑅 ) ) ) )  | 
						
						
							| 15 | 
							
								9 13 14
							 | 
							syl2anc | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( ( 𝐹  ∘  ( ℤRHom ‘ 𝑅 ) ) ‘ ( chr ‘ 𝑅 ) )  =  ( 𝐹 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( chr ‘ 𝑅 ) ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 )  | 
						
						
							| 17 | 
							
								10 2 16
							 | 
							chrid | 
							⊢ ( 𝑅  ∈  Ring  →  ( ( ℤRHom ‘ 𝑅 ) ‘ ( chr ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 18 | 
							
								1 17
							 | 
							syl | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( ( ℤRHom ‘ 𝑅 ) ‘ ( chr ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							fveq2d | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( 𝐹 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( chr ‘ 𝑅 ) ) )  =  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 20 | 
							
								15 19
							 | 
							eqtrd | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( ( 𝐹  ∘  ( ℤRHom ‘ 𝑅 ) ) ‘ ( chr ‘ 𝑅 ) )  =  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							rhmco | 
							⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  ( ℤRHom ‘ 𝑅 )  ∈  ( ℤring  RingHom  𝑅 ) )  →  ( 𝐹  ∘  ( ℤRHom ‘ 𝑅 ) )  ∈  ( ℤring  RingHom  𝑆 ) )  | 
						
						
							| 22 | 
							
								4 21
							 | 
							mpdan | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( 𝐹  ∘  ( ℤRHom ‘ 𝑅 ) )  ∈  ( ℤring  RingHom  𝑆 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							rhmrcl2 | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑆  ∈  Ring )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							⊢ ( ℤRHom ‘ 𝑆 )  =  ( ℤRHom ‘ 𝑆 )  | 
						
						
							| 25 | 
							
								24
							 | 
							zrhrhmb | 
							⊢ ( 𝑆  ∈  Ring  →  ( ( 𝐹  ∘  ( ℤRHom ‘ 𝑅 ) )  ∈  ( ℤring  RingHom  𝑆 )  ↔  ( 𝐹  ∘  ( ℤRHom ‘ 𝑅 ) )  =  ( ℤRHom ‘ 𝑆 ) ) )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							syl | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( ( 𝐹  ∘  ( ℤRHom ‘ 𝑅 ) )  ∈  ( ℤring  RingHom  𝑆 )  ↔  ( 𝐹  ∘  ( ℤRHom ‘ 𝑅 ) )  =  ( ℤRHom ‘ 𝑆 ) ) )  | 
						
						
							| 27 | 
							
								22 26
							 | 
							mpbid | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( 𝐹  ∘  ( ℤRHom ‘ 𝑅 ) )  =  ( ℤRHom ‘ 𝑆 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							fveq1d | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( ( 𝐹  ∘  ( ℤRHom ‘ 𝑅 ) ) ‘ ( chr ‘ 𝑅 ) )  =  ( ( ℤRHom ‘ 𝑆 ) ‘ ( chr ‘ 𝑅 ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							rhmghm | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 )  | 
						
						
							| 31 | 
							
								16 30
							 | 
							ghmid | 
							⊢ ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							syl | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) )  | 
						
						
							| 33 | 
							
								20 28 32
							 | 
							3eqtr3d | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( ( ℤRHom ‘ 𝑆 ) ‘ ( chr ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							eqid | 
							⊢ ( chr ‘ 𝑆 )  =  ( chr ‘ 𝑆 )  | 
						
						
							| 35 | 
							
								34 24 30
							 | 
							chrdvds | 
							⊢ ( ( 𝑆  ∈  Ring  ∧  ( chr ‘ 𝑅 )  ∈  ℤ )  →  ( ( chr ‘ 𝑆 )  ∥  ( chr ‘ 𝑅 )  ↔  ( ( ℤRHom ‘ 𝑆 ) ‘ ( chr ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) ) )  | 
						
						
							| 36 | 
							
								23 13 35
							 | 
							syl2anc | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( ( chr ‘ 𝑆 )  ∥  ( chr ‘ 𝑅 )  ↔  ( ( ℤRHom ‘ 𝑆 ) ‘ ( chr ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) ) )  | 
						
						
							| 37 | 
							
								33 36
							 | 
							mpbird | 
							⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( chr ‘ 𝑆 )  ∥  ( chr ‘ 𝑅 ) )  |