Step |
Hyp |
Ref |
Expression |
1 |
|
rhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) |
2 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
3 |
2
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) |
4 |
1 3
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) |
5 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
7 |
5 6
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
8 |
|
ffn |
⊢ ( ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) → ( ℤRHom ‘ 𝑅 ) Fn ℤ ) |
9 |
4 7 8
|
3syl |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ℤRHom ‘ 𝑅 ) Fn ℤ ) |
10 |
|
eqid |
⊢ ( chr ‘ 𝑅 ) = ( chr ‘ 𝑅 ) |
11 |
10
|
chrcl |
⊢ ( 𝑅 ∈ Ring → ( chr ‘ 𝑅 ) ∈ ℕ0 ) |
12 |
|
nn0z |
⊢ ( ( chr ‘ 𝑅 ) ∈ ℕ0 → ( chr ‘ 𝑅 ) ∈ ℤ ) |
13 |
1 11 12
|
3syl |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( chr ‘ 𝑅 ) ∈ ℤ ) |
14 |
|
fvco2 |
⊢ ( ( ( ℤRHom ‘ 𝑅 ) Fn ℤ ∧ ( chr ‘ 𝑅 ) ∈ ℤ ) → ( ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ‘ ( chr ‘ 𝑅 ) ) = ( 𝐹 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( chr ‘ 𝑅 ) ) ) ) |
15 |
9 13 14
|
syl2anc |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ‘ ( chr ‘ 𝑅 ) ) = ( 𝐹 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( chr ‘ 𝑅 ) ) ) ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
17 |
10 2 16
|
chrid |
⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ ( chr ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
18 |
1 17
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( chr ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( chr ‘ 𝑅 ) ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
20 |
15 19
|
eqtrd |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ‘ ( chr ‘ 𝑅 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
21 |
|
rhmco |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) → ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ∈ ( ℤring RingHom 𝑆 ) ) |
22 |
4 21
|
mpdan |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ∈ ( ℤring RingHom 𝑆 ) ) |
23 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) |
24 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑆 ) = ( ℤRHom ‘ 𝑆 ) |
25 |
24
|
zrhrhmb |
⊢ ( 𝑆 ∈ Ring → ( ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ∈ ( ℤring RingHom 𝑆 ) ↔ ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) = ( ℤRHom ‘ 𝑆 ) ) ) |
26 |
23 25
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ∈ ( ℤring RingHom 𝑆 ) ↔ ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) = ( ℤRHom ‘ 𝑆 ) ) ) |
27 |
22 26
|
mpbid |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) = ( ℤRHom ‘ 𝑆 ) ) |
28 |
27
|
fveq1d |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ‘ ( chr ‘ 𝑅 ) ) = ( ( ℤRHom ‘ 𝑆 ) ‘ ( chr ‘ 𝑅 ) ) ) |
29 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
30 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
31 |
16 30
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
32 |
29 31
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
33 |
20 28 32
|
3eqtr3d |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( ℤRHom ‘ 𝑆 ) ‘ ( chr ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
34 |
|
eqid |
⊢ ( chr ‘ 𝑆 ) = ( chr ‘ 𝑆 ) |
35 |
34 24 30
|
chrdvds |
⊢ ( ( 𝑆 ∈ Ring ∧ ( chr ‘ 𝑅 ) ∈ ℤ ) → ( ( chr ‘ 𝑆 ) ∥ ( chr ‘ 𝑅 ) ↔ ( ( ℤRHom ‘ 𝑆 ) ‘ ( chr ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) ) |
36 |
23 13 35
|
syl2anc |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( chr ‘ 𝑆 ) ∥ ( chr ‘ 𝑅 ) ↔ ( ( ℤRHom ‘ 𝑆 ) ‘ ( chr ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) ) |
37 |
33 36
|
mpbird |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( chr ‘ 𝑆 ) ∥ ( chr ‘ 𝑅 ) ) |