Step |
Hyp |
Ref |
Expression |
1 |
|
chrval.o |
⊢ 𝑂 = ( od ‘ 𝑅 ) |
2 |
|
chrval.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
chrval.c |
⊢ 𝐶 = ( chr ‘ 𝑅 ) |
4 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( od ‘ 𝑟 ) = ( od ‘ 𝑅 ) ) |
5 |
4 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( od ‘ 𝑟 ) = 𝑂 ) |
6 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑅 ) ) |
7 |
6 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = 1 ) |
8 |
5 7
|
fveq12d |
⊢ ( 𝑟 = 𝑅 → ( ( od ‘ 𝑟 ) ‘ ( 1r ‘ 𝑟 ) ) = ( 𝑂 ‘ 1 ) ) |
9 |
|
df-chr |
⊢ chr = ( 𝑟 ∈ V ↦ ( ( od ‘ 𝑟 ) ‘ ( 1r ‘ 𝑟 ) ) ) |
10 |
|
fvex |
⊢ ( 𝑂 ‘ 1 ) ∈ V |
11 |
8 9 10
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( chr ‘ 𝑅 ) = ( 𝑂 ‘ 1 ) ) |
12 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( chr ‘ 𝑅 ) = ∅ ) |
13 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( od ‘ 𝑅 ) = ∅ ) |
14 |
1 13
|
eqtrid |
⊢ ( ¬ 𝑅 ∈ V → 𝑂 = ∅ ) |
15 |
14
|
fveq1d |
⊢ ( ¬ 𝑅 ∈ V → ( 𝑂 ‘ 1 ) = ( ∅ ‘ 1 ) ) |
16 |
|
0fv |
⊢ ( ∅ ‘ 1 ) = ∅ |
17 |
15 16
|
eqtrdi |
⊢ ( ¬ 𝑅 ∈ V → ( 𝑂 ‘ 1 ) = ∅ ) |
18 |
12 17
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → ( chr ‘ 𝑅 ) = ( 𝑂 ‘ 1 ) ) |
19 |
11 18
|
pm2.61i |
⊢ ( chr ‘ 𝑅 ) = ( 𝑂 ‘ 1 ) |
20 |
3 19
|
eqtr2i |
⊢ ( 𝑂 ‘ 1 ) = 𝐶 |