| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chrval.o | ⊢ 𝑂  =  ( od ‘ 𝑅 ) | 
						
							| 2 |  | chrval.u | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 3 |  | chrval.c | ⊢ 𝐶  =  ( chr ‘ 𝑅 ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( od ‘ 𝑟 )  =  ( od ‘ 𝑅 ) ) | 
						
							| 5 | 4 1 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( od ‘ 𝑟 )  =  𝑂 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( 1r ‘ 𝑟 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 7 | 6 2 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( 1r ‘ 𝑟 )  =   1  ) | 
						
							| 8 | 5 7 | fveq12d | ⊢ ( 𝑟  =  𝑅  →  ( ( od ‘ 𝑟 ) ‘ ( 1r ‘ 𝑟 ) )  =  ( 𝑂 ‘  1  ) ) | 
						
							| 9 |  | df-chr | ⊢ chr  =  ( 𝑟  ∈  V  ↦  ( ( od ‘ 𝑟 ) ‘ ( 1r ‘ 𝑟 ) ) ) | 
						
							| 10 |  | fvex | ⊢ ( 𝑂 ‘  1  )  ∈  V | 
						
							| 11 | 8 9 10 | fvmpt | ⊢ ( 𝑅  ∈  V  →  ( chr ‘ 𝑅 )  =  ( 𝑂 ‘  1  ) ) | 
						
							| 12 |  | fvprc | ⊢ ( ¬  𝑅  ∈  V  →  ( chr ‘ 𝑅 )  =  ∅ ) | 
						
							| 13 |  | fvprc | ⊢ ( ¬  𝑅  ∈  V  →  ( od ‘ 𝑅 )  =  ∅ ) | 
						
							| 14 | 1 13 | eqtrid | ⊢ ( ¬  𝑅  ∈  V  →  𝑂  =  ∅ ) | 
						
							| 15 | 14 | fveq1d | ⊢ ( ¬  𝑅  ∈  V  →  ( 𝑂 ‘  1  )  =  ( ∅ ‘  1  ) ) | 
						
							| 16 |  | 0fv | ⊢ ( ∅ ‘  1  )  =  ∅ | 
						
							| 17 | 15 16 | eqtrdi | ⊢ ( ¬  𝑅  ∈  V  →  ( 𝑂 ‘  1  )  =  ∅ ) | 
						
							| 18 | 12 17 | eqtr4d | ⊢ ( ¬  𝑅  ∈  V  →  ( chr ‘ 𝑅 )  =  ( 𝑂 ‘  1  ) ) | 
						
							| 19 | 11 18 | pm2.61i | ⊢ ( chr ‘ 𝑅 )  =  ( 𝑂 ‘  1  ) | 
						
							| 20 | 3 19 | eqtr2i | ⊢ ( 𝑂 ‘  1  )  =  𝐶 |