Step |
Hyp |
Ref |
Expression |
1 |
|
chscl.1 |
⊢ ( 𝜑 → 𝐴 ∈ Cℋ ) |
2 |
|
chscl.2 |
⊢ ( 𝜑 → 𝐵 ∈ Cℋ ) |
3 |
|
chscl.3 |
⊢ ( 𝜑 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) |
4 |
|
chsh |
⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ Sℋ ) |
6 |
|
chsh |
⊢ ( 𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ Sℋ ) |
8 |
|
shscl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ) |
9 |
5 7 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ) |
10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) ) → 𝐴 ∈ Cℋ ) |
11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) ) → 𝐵 ∈ Cℋ ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) ) → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) |
13 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) ) → 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) |
14 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) ) → 𝑓 ⇝𝑣 𝑧 ) |
15 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
16 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ ↦ ( ( projℎ ‘ 𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ ( ( projℎ ‘ 𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
17 |
10 11 12 13 14 15 16
|
chscllem4 |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) ) → 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) ) |
18 |
17
|
ex |
⊢ ( 𝜑 → ( ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) → 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
19 |
18
|
alrimivv |
⊢ ( 𝜑 → ∀ 𝑓 ∀ 𝑧 ( ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) → 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
20 |
|
isch2 |
⊢ ( ( 𝐴 +ℋ 𝐵 ) ∈ Cℋ ↔ ( ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑧 ( ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) → 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) ) |
21 |
9 19 20
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) ∈ Cℋ ) |