Metamath Proof Explorer


Theorem chscl

Description: The subspace sum of two closed orthogonal spaces is closed. (Contributed by NM, 19-Oct-1999) (Proof shortened by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses chscl.1 ( 𝜑𝐴C )
chscl.2 ( 𝜑𝐵C )
chscl.3 ( 𝜑𝐵 ⊆ ( ⊥ ‘ 𝐴 ) )
Assertion chscl ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ C )

Proof

Step Hyp Ref Expression
1 chscl.1 ( 𝜑𝐴C )
2 chscl.2 ( 𝜑𝐵C )
3 chscl.3 ( 𝜑𝐵 ⊆ ( ⊥ ‘ 𝐴 ) )
4 chsh ( 𝐴C𝐴S )
5 1 4 syl ( 𝜑𝐴S )
6 chsh ( 𝐵C𝐵S )
7 2 6 syl ( 𝜑𝐵S )
8 shscl ( ( 𝐴S𝐵S ) → ( 𝐴 + 𝐵 ) ∈ S )
9 5 7 8 syl2anc ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ S )
10 1 adantr ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 + 𝐵 ) ∧ 𝑓𝑣 𝑧 ) ) → 𝐴C )
11 2 adantr ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 + 𝐵 ) ∧ 𝑓𝑣 𝑧 ) ) → 𝐵C )
12 3 adantr ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 + 𝐵 ) ∧ 𝑓𝑣 𝑧 ) ) → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) )
13 simprl ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 + 𝐵 ) ∧ 𝑓𝑣 𝑧 ) ) → 𝑓 : ℕ ⟶ ( 𝐴 + 𝐵 ) )
14 simprr ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 + 𝐵 ) ∧ 𝑓𝑣 𝑧 ) ) → 𝑓𝑣 𝑧 )
15 eqid ( 𝑥 ∈ ℕ ↦ ( ( proj𝐴 ) ‘ ( 𝑓𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ ( ( proj𝐴 ) ‘ ( 𝑓𝑥 ) ) )
16 eqid ( 𝑥 ∈ ℕ ↦ ( ( proj𝐵 ) ‘ ( 𝑓𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ ( ( proj𝐵 ) ‘ ( 𝑓𝑥 ) ) )
17 10 11 12 13 14 15 16 chscllem4 ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 + 𝐵 ) ∧ 𝑓𝑣 𝑧 ) ) → 𝑧 ∈ ( 𝐴 + 𝐵 ) )
18 17 ex ( 𝜑 → ( ( 𝑓 : ℕ ⟶ ( 𝐴 + 𝐵 ) ∧ 𝑓𝑣 𝑧 ) → 𝑧 ∈ ( 𝐴 + 𝐵 ) ) )
19 18 alrimivv ( 𝜑 → ∀ 𝑓𝑧 ( ( 𝑓 : ℕ ⟶ ( 𝐴 + 𝐵 ) ∧ 𝑓𝑣 𝑧 ) → 𝑧 ∈ ( 𝐴 + 𝐵 ) ) )
20 isch2 ( ( 𝐴 + 𝐵 ) ∈ C ↔ ( ( 𝐴 + 𝐵 ) ∈ S ∧ ∀ 𝑓𝑧 ( ( 𝑓 : ℕ ⟶ ( 𝐴 + 𝐵 ) ∧ 𝑓𝑣 𝑧 ) → 𝑧 ∈ ( 𝐴 + 𝐵 ) ) ) )
21 9 19 20 sylanbrc ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ C )