Step |
Hyp |
Ref |
Expression |
1 |
|
chscl.1 |
⊢ ( 𝜑 → 𝐴 ∈ Cℋ ) |
2 |
|
chscl.2 |
⊢ ( 𝜑 → 𝐵 ∈ Cℋ ) |
3 |
|
chscl.3 |
⊢ ( 𝜑 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) |
4 |
|
chscl.4 |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) |
5 |
|
chscl.5 |
⊢ ( 𝜑 → 𝐻 ⇝𝑣 𝑢 ) |
6 |
|
chscl.6 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ) |
7 |
|
eqid |
⊢ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ Cℋ ) |
9 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐻 ‘ 𝑛 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
10 |
|
chsh |
⊢ ( 𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ Sℋ ) |
12 |
|
chsh |
⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) |
13 |
1 12
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ Sℋ ) |
14 |
|
shocsh |
⊢ ( 𝐴 ∈ Sℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
16 |
|
shless |
⊢ ( ( ( 𝐵 ∈ Sℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) ∧ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) → ( 𝐵 +ℋ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
17 |
11 15 13 3 16
|
syl31anc |
⊢ ( 𝜑 → ( 𝐵 +ℋ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
18 |
|
shscom |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) |
19 |
13 11 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) |
20 |
|
shscom |
⊢ ( ( 𝐴 ∈ Sℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) → ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
21 |
13 15 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
22 |
17 19 21
|
3sstr4d |
⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
23 |
22
|
sselda |
⊢ ( ( 𝜑 ∧ ( 𝐻 ‘ 𝑛 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( 𝐻 ‘ 𝑛 ) ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
24 |
9 23
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐻 ‘ 𝑛 ) ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
25 |
|
pjpreeq |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐻 ‘ 𝑛 ) ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) → ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ↔ ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑛 ) = ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) +ℎ 𝑥 ) ) ) ) |
26 |
8 24 25
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ↔ ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑛 ) = ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) +ℎ 𝑥 ) ) ) ) |
27 |
7 26
|
mpbii |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑛 ) = ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) +ℎ 𝑥 ) ) ) |
28 |
27
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ∈ 𝐴 ) |
29 |
28 6
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝐴 ) |