Step |
Hyp |
Ref |
Expression |
1 |
|
chscl.1 |
⊢ ( 𝜑 → 𝐴 ∈ Cℋ ) |
2 |
|
chscl.2 |
⊢ ( 𝜑 → 𝐵 ∈ Cℋ ) |
3 |
|
chscl.3 |
⊢ ( 𝜑 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) |
4 |
|
chscl.4 |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) |
5 |
|
chscl.5 |
⊢ ( 𝜑 → 𝐻 ⇝𝑣 𝑢 ) |
6 |
|
chscl.6 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ) |
7 |
1 2 3 4 5 6
|
chscllem1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝐴 ) |
8 |
|
chss |
⊢ ( 𝐴 ∈ Cℋ → 𝐴 ⊆ ℋ ) |
9 |
1 8
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℋ ) |
10 |
7 9
|
fssd |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℋ ) |
11 |
|
hlimcaui |
⊢ ( 𝐻 ⇝𝑣 𝑢 → 𝐻 ∈ Cauchy ) |
12 |
5 11
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ Cauchy ) |
13 |
|
hcaucvg |
⊢ ( ( 𝐻 ∈ Cauchy ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 ) |
14 |
12 13
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 ) |
15 |
|
eluznn |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
16 |
15
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
17 |
|
chsh |
⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) |
18 |
1 17
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ Sℋ ) |
19 |
|
chsh |
⊢ ( 𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) |
20 |
2 19
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ Sℋ ) |
21 |
|
shscl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ) |
22 |
18 20 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ) |
23 |
|
shss |
⊢ ( ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ → ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ) |
26 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐻 ‘ 𝑗 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
27 |
25 26
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐻 ‘ 𝑗 ) ∈ ℋ ) |
28 |
27
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝐻 ‘ 𝑗 ) ∈ ℋ ) |
29 |
4 24
|
fssd |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ℋ ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 𝐻 : ℕ ⟶ ℋ ) |
31 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 𝑘 ∈ ℕ ) |
32 |
30 31
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝐻 ‘ 𝑘 ) ∈ ℋ ) |
33 |
|
hvsubcl |
⊢ ( ( ( 𝐻 ‘ 𝑗 ) ∈ ℋ ∧ ( 𝐻 ‘ 𝑘 ) ∈ ℋ ) → ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ∈ ℋ ) |
34 |
28 32 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ∈ ℋ ) |
35 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐴 ⊆ ℋ ) |
36 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝐴 ) |
37 |
35 36
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ℋ ) |
38 |
37
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℋ ) |
39 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 𝐴 ⊆ ℋ ) |
40 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 𝐹 : ℕ ⟶ 𝐴 ) |
41 |
40 31
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐴 ) |
42 |
39 41
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℋ ) |
43 |
|
hvsubcl |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) ∈ ℋ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℋ ) → ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ℋ ) |
44 |
38 42 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ℋ ) |
45 |
|
hvsubcl |
⊢ ( ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ∈ ℋ ∧ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ℋ ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℋ ) |
46 |
34 44 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℋ ) |
47 |
|
normcl |
⊢ ( ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℋ → ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ ) |
48 |
46 47
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ ) |
49 |
48
|
sqge0d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 0 ≤ ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ) |
50 |
|
normcl |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ℋ → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
51 |
44 50
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
52 |
51
|
resqcld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) ∈ ℝ ) |
53 |
48
|
resqcld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ∈ ℝ ) |
54 |
52 53
|
addge01d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 0 ≤ ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ↔ ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) ≤ ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ) ) ) |
55 |
49 54
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) ≤ ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ) ) |
56 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 𝐴 ∈ Sℋ ) |
57 |
36
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝐴 ) |
58 |
|
shsubcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ 𝐴 ) |
59 |
56 57 41 58
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ 𝐴 ) |
60 |
|
hvsubsub4 |
⊢ ( ( ( ( 𝐻 ‘ 𝑗 ) ∈ ℋ ∧ ( 𝐻 ‘ 𝑘 ) ∈ ℋ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℋ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℋ ) ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) −ℎ ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) |
61 |
28 32 38 42 60
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) −ℎ ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) |
62 |
|
ocsh |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
63 |
39 62
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
64 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑗 → ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑗 ) ) ) |
65 |
|
fvex |
⊢ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑗 ) ) ∈ V |
66 |
64 6 65
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ → ( 𝐹 ‘ 𝑗 ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑗 ) ) ) |
67 |
66
|
eqcomd |
⊢ ( 𝑗 ∈ ℕ → ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐹 ‘ 𝑗 ) ) |
68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐹 ‘ 𝑗 ) ) |
69 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐴 ∈ Cℋ ) |
70 |
9 62
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
71 |
|
shless |
⊢ ( ( ( 𝐵 ∈ Sℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) ∧ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) → ( 𝐵 +ℋ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
72 |
20 70 18 3 71
|
syl31anc |
⊢ ( 𝜑 → ( 𝐵 +ℋ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
73 |
|
shscom |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) |
74 |
18 20 73
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) |
75 |
|
shscom |
⊢ ( ( 𝐴 ∈ Sℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) → ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
76 |
18 70 75
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
77 |
72 74 76
|
3sstr4d |
⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
79 |
78 26
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐻 ‘ 𝑗 ) ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
80 |
|
pjpreeq |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐻 ‘ 𝑗 ) ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) → ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐹 ‘ 𝑗 ) ↔ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) ) ) ) |
81 |
69 79 80
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐹 ‘ 𝑗 ) ↔ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) ) ) ) |
82 |
68 81
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) ) ) |
83 |
82
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) ) |
84 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝐻 ‘ 𝑗 ) ∈ ℋ ) |
85 |
37
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℋ ) |
86 |
|
shss |
⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) |
87 |
70 86
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) |
88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) |
89 |
88
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) → 𝑥 ∈ ℋ ) |
90 |
|
hvsubadd |
⊢ ( ( ( 𝐻 ‘ 𝑗 ) ∈ ℋ ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) = 𝑥 ↔ ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) = ( 𝐻 ‘ 𝑗 ) ) ) |
91 |
84 85 89 90
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) = 𝑥 ↔ ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) = ( 𝐻 ‘ 𝑗 ) ) ) |
92 |
|
eqcom |
⊢ ( 𝑥 = ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ↔ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) = 𝑥 ) |
93 |
|
eqcom |
⊢ ( ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) = ( 𝐻 ‘ 𝑗 ) ) |
94 |
91 92 93
|
3bitr4g |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝑥 = ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ↔ ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) ) ) |
95 |
94
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑥 = ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ↔ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) ) ) |
96 |
83 95
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑥 = ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ) |
97 |
|
risset |
⊢ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑥 = ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ) |
98 |
96 97
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) |
99 |
98
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) |
100 |
|
eleq1w |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 ∈ ℕ ↔ 𝑘 ∈ ℕ ) ) |
101 |
100
|
anbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ↔ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) ) |
102 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐻 ‘ 𝑗 ) = ( 𝐻 ‘ 𝑘 ) ) |
103 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) ) |
104 |
102 103
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) |
105 |
104
|
eleq1d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) ) |
106 |
101 105
|
imbi12d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) ) ) |
107 |
106 98
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) |
108 |
107
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) |
109 |
|
shsubcl |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ ∧ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ∈ ( ⊥ ‘ 𝐴 ) ∧ ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) −ℎ ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ⊥ ‘ 𝐴 ) ) |
110 |
63 99 108 109
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) −ℎ ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ⊥ ‘ 𝐴 ) ) |
111 |
61 110
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ⊥ ‘ 𝐴 ) ) |
112 |
|
shocorth |
⊢ ( 𝐴 ∈ Sℋ → ( ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ 𝐴 ∧ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ⊥ ‘ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ·ih ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) = 0 ) ) |
113 |
56 112
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ 𝐴 ∧ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ⊥ ‘ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ·ih ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) = 0 ) ) |
114 |
59 111 113
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ·ih ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) = 0 ) |
115 |
|
normpyth |
⊢ ( ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ℋ ∧ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℋ ) → ( ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ·ih ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) = 0 → ( ( normℎ ‘ ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) +ℎ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ) ) ) |
116 |
44 46 115
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ·ih ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) = 0 → ( ( normℎ ‘ ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) +ℎ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ) ) ) |
117 |
114 116
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) +ℎ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ) ) |
118 |
|
hvpncan3 |
⊢ ( ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ℋ ∧ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ∈ ℋ ) → ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) +ℎ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) |
119 |
44 34 118
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) +ℎ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) |
120 |
119
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) +ℎ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ) = ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ) |
121 |
120
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) +ℎ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ↑ 2 ) = ( ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ↑ 2 ) ) |
122 |
117 121
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ) = ( ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ↑ 2 ) ) |
123 |
55 122
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ↑ 2 ) ) |
124 |
|
normcl |
⊢ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ∈ ℋ → ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ∈ ℝ ) |
125 |
34 124
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ∈ ℝ ) |
126 |
|
normge0 |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) |
127 |
44 126
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 0 ≤ ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) |
128 |
|
normge0 |
⊢ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ) |
129 |
34 128
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 0 ≤ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ) |
130 |
51 125 127 129
|
le2sqd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ↔ ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ↑ 2 ) ) ) |
131 |
123 130
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ) |
132 |
131
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ) |
133 |
51
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
134 |
125
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ∈ ℝ ) |
135 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
136 |
135
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 𝑥 ∈ ℝ ) |
137 |
|
lelttr |
⊢ ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ∧ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ∧ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 ) → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
138 |
133 134 136 137
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ∧ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 ) → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
139 |
132 138
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
140 |
139
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
141 |
16 140
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
142 |
141
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
143 |
142
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
144 |
14 143
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) |
145 |
144
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) |
146 |
|
hcau |
⊢ ( 𝐹 ∈ Cauchy ↔ ( 𝐹 : ℕ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
147 |
10 145 146
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ∈ Cauchy ) |
148 |
|
ax-hcompl |
⊢ ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ) |
149 |
|
hlimf |
⊢ ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ |
150 |
|
ffn |
⊢ ( ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ → ⇝𝑣 Fn dom ⇝𝑣 ) |
151 |
149 150
|
ax-mp |
⊢ ⇝𝑣 Fn dom ⇝𝑣 |
152 |
|
fnbr |
⊢ ( ( ⇝𝑣 Fn dom ⇝𝑣 ∧ 𝐹 ⇝𝑣 𝑥 ) → 𝐹 ∈ dom ⇝𝑣 ) |
153 |
151 152
|
mpan |
⊢ ( 𝐹 ⇝𝑣 𝑥 → 𝐹 ∈ dom ⇝𝑣 ) |
154 |
153
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 → 𝐹 ∈ dom ⇝𝑣 ) |
155 |
147 148 154
|
3syl |
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝𝑣 ) |