Step |
Hyp |
Ref |
Expression |
1 |
|
chscl.1 |
⊢ ( 𝜑 → 𝐴 ∈ Cℋ ) |
2 |
|
chscl.2 |
⊢ ( 𝜑 → 𝐵 ∈ Cℋ ) |
3 |
|
chscl.3 |
⊢ ( 𝜑 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) |
4 |
|
chscl.4 |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) |
5 |
|
chscl.5 |
⊢ ( 𝜑 → 𝐻 ⇝𝑣 𝑢 ) |
6 |
|
chscl.6 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ) |
7 |
|
chscllem3.7 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
8 |
|
chscllem3.8 |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
9 |
|
chscllem3.9 |
⊢ ( 𝜑 → 𝐷 ∈ 𝐵 ) |
10 |
|
chscllem3.10 |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) = ( 𝐶 +ℎ 𝐷 ) ) |
11 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑁 → ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) |
12 |
|
fvex |
⊢ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ∈ V |
13 |
11 6 12
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ → ( 𝐹 ‘ 𝑁 ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) |
14 |
7 13
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) |
15 |
14
|
eqcomd |
⊢ ( 𝜑 → ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = ( 𝐹 ‘ 𝑁 ) ) |
16 |
|
chsh |
⊢ ( 𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) |
17 |
2 16
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ Sℋ ) |
18 |
|
chsh |
⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) |
19 |
1 18
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ Sℋ ) |
20 |
|
shocsh |
⊢ ( 𝐴 ∈ Sℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
22 |
|
shless |
⊢ ( ( ( 𝐵 ∈ Sℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) ∧ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) → ( 𝐵 +ℋ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
23 |
17 21 19 3 22
|
syl31anc |
⊢ ( 𝜑 → ( 𝐵 +ℋ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
24 |
|
shscom |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) |
25 |
19 17 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) |
26 |
|
shscom |
⊢ ( ( 𝐴 ∈ Sℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) → ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
27 |
19 21 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
28 |
23 25 27
|
3sstr4d |
⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
29 |
4 7
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
30 |
28 29
|
sseldd |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
31 |
|
pjpreeq |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐻 ‘ 𝑁 ) ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) → ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = ( 𝐹 ‘ 𝑁 ) ↔ ( ( 𝐹 ‘ 𝑁 ) ∈ 𝐴 ∧ ∃ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) ) |
32 |
1 30 31
|
syl2anc |
⊢ ( 𝜑 → ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = ( 𝐹 ‘ 𝑁 ) ↔ ( ( 𝐹 ‘ 𝑁 ) ∈ 𝐴 ∧ ∃ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) ) |
33 |
15 32
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑁 ) ∈ 𝐴 ∧ ∃ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) |
34 |
33
|
simprd |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) |
35 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → 𝐴 ∈ Sℋ ) |
36 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
37 |
|
ocin |
⊢ ( 𝐴 ∈ Sℋ → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) |
38 |
19 37
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) |
40 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → 𝐶 ∈ 𝐴 ) |
41 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) |
42 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → 𝐷 ∈ 𝐵 ) |
43 |
41 42
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → 𝐷 ∈ ( ⊥ ‘ 𝐴 ) ) |
44 |
1 2 3 4 5 6
|
chscllem1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝐴 ) |
45 |
44 7
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ 𝐴 ) |
46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → ( 𝐹 ‘ 𝑁 ) ∈ 𝐴 ) |
47 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ) |
48 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → ( 𝐻 ‘ 𝑁 ) = ( 𝐶 +ℎ 𝐷 ) ) |
49 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) |
50 |
48 49
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → ( 𝐶 +ℎ 𝐷 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) |
51 |
35 36 39 40 43 46 47 50
|
shuni |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → ( 𝐶 = ( 𝐹 ‘ 𝑁 ) ∧ 𝐷 = 𝑧 ) ) |
52 |
51
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → 𝐶 = ( 𝐹 ‘ 𝑁 ) ) |
53 |
34 52
|
rexlimddv |
⊢ ( 𝜑 → 𝐶 = ( 𝐹 ‘ 𝑁 ) ) |