| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							chscl.1 | 
							⊢ ( 𝜑  →  𝐴  ∈   Cℋ  )  | 
						
						
							| 2 | 
							
								
							 | 
							chscl.2 | 
							⊢ ( 𝜑  →  𝐵  ∈   Cℋ  )  | 
						
						
							| 3 | 
							
								
							 | 
							chscl.3 | 
							⊢ ( 𝜑  →  𝐵  ⊆  ( ⊥ ‘ 𝐴 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							chscl.4 | 
							⊢ ( 𝜑  →  𝐻 : ℕ ⟶ ( 𝐴  +ℋ  𝐵 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							chscl.5 | 
							⊢ ( 𝜑  →  𝐻  ⇝𝑣  𝑢 )  | 
						
						
							| 6 | 
							
								
							 | 
							chscl.6 | 
							⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							chscl.7 | 
							⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  ( ( projℎ ‘ 𝐵 ) ‘ ( 𝐻 ‘ 𝑛 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							hlimf | 
							⊢  ⇝𝑣  : dom   ⇝𝑣  ⟶  ℋ  | 
						
						
							| 9 | 
							
								
							 | 
							ffun | 
							⊢ (  ⇝𝑣  : dom   ⇝𝑣  ⟶  ℋ  →  Fun   ⇝𝑣  )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ax-mp | 
							⊢ Fun   ⇝𝑣   | 
						
						
							| 11 | 
							
								
							 | 
							funbrfv | 
							⊢ ( Fun   ⇝𝑣   →  ( 𝐻  ⇝𝑣  𝑢  →  (  ⇝𝑣  ‘ 𝐻 )  =  𝑢 ) )  | 
						
						
							| 12 | 
							
								10 5 11
							 | 
							mpsyl | 
							⊢ ( 𝜑  →  (  ⇝𝑣  ‘ 𝐻 )  =  𝑢 )  | 
						
						
							| 13 | 
							
								4
							 | 
							feqmptd | 
							⊢ ( 𝜑  →  𝐻  =  ( 𝑘  ∈  ℕ  ↦  ( 𝐻 ‘ 𝑘 ) ) )  | 
						
						
							| 14 | 
							
								4
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐻 ‘ 𝑘 )  ∈  ( 𝐴  +ℋ  𝐵 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							chsh | 
							⊢ ( 𝐴  ∈   Cℋ   →  𝐴  ∈   Sℋ  )  | 
						
						
							| 16 | 
							
								1 15
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐴  ∈   Sℋ  )  | 
						
						
							| 17 | 
							
								
							 | 
							chsh | 
							⊢ ( 𝐵  ∈   Cℋ   →  𝐵  ∈   Sℋ  )  | 
						
						
							| 18 | 
							
								2 17
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐵  ∈   Sℋ  )  | 
						
						
							| 19 | 
							
								
							 | 
							shsel | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( ( 𝐻 ‘ 𝑘 )  ∈  ( 𝐴  +ℋ  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) ) )  | 
						
						
							| 20 | 
							
								16 18 19
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( 𝐻 ‘ 𝑘 )  ∈  ( 𝐴  +ℋ  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							biimpa | 
							⊢ ( ( 𝜑  ∧  ( 𝐻 ‘ 𝑘 )  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  | 
						
						
							| 22 | 
							
								14 21
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝜑 )  | 
						
						
							| 25 | 
							
								24 1
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝐴  ∈   Cℋ  )  | 
						
						
							| 26 | 
							
								24 2
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝐵  ∈   Cℋ  )  | 
						
						
							| 27 | 
							
								24 3
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝐵  ⊆  ( ⊥ ‘ 𝐴 ) )  | 
						
						
							| 28 | 
							
								24 4
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝐻 : ℕ ⟶ ( 𝐴  +ℋ  𝐵 ) )  | 
						
						
							| 29 | 
							
								24 5
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝐻  ⇝𝑣  𝑢 )  | 
						
						
							| 30 | 
							
								
							 | 
							simp1r | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝑘  ∈  ℕ )  | 
						
						
							| 31 | 
							
								
							 | 
							simp2l | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 32 | 
							
								
							 | 
							simp2r | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝑦  ∈  𝐵 )  | 
						
						
							| 33 | 
							
								25 26 27 28 29 6 30 31 32 23
							 | 
							chscllem3 | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝑥  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							chsscon2 | 
							⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝐴  ∈   Cℋ  )  →  ( 𝐵  ⊆  ( ⊥ ‘ 𝐴 )  ↔  𝐴  ⊆  ( ⊥ ‘ 𝐵 ) ) )  | 
						
						
							| 35 | 
							
								2 1 34
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐵  ⊆  ( ⊥ ‘ 𝐴 )  ↔  𝐴  ⊆  ( ⊥ ‘ 𝐵 ) ) )  | 
						
						
							| 36 | 
							
								3 35
							 | 
							mpbid | 
							⊢ ( 𝜑  →  𝐴  ⊆  ( ⊥ ‘ 𝐵 ) )  | 
						
						
							| 37 | 
							
								24 36
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝐴  ⊆  ( ⊥ ‘ 𝐵 ) )  | 
						
						
							| 38 | 
							
								
							 | 
							shscom | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐴  +ℋ  𝐵 )  =  ( 𝐵  +ℋ  𝐴 ) )  | 
						
						
							| 39 | 
							
								16 18 38
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐴  +ℋ  𝐵 )  =  ( 𝐵  +ℋ  𝐴 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							feq3d | 
							⊢ ( 𝜑  →  ( 𝐻 : ℕ ⟶ ( 𝐴  +ℋ  𝐵 )  ↔  𝐻 : ℕ ⟶ ( 𝐵  +ℋ  𝐴 ) ) )  | 
						
						
							| 41 | 
							
								4 40
							 | 
							mpbid | 
							⊢ ( 𝜑  →  𝐻 : ℕ ⟶ ( 𝐵  +ℋ  𝐴 ) )  | 
						
						
							| 42 | 
							
								24 41
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝐻 : ℕ ⟶ ( 𝐵  +ℋ  𝐴 ) )  | 
						
						
							| 43 | 
							
								
							 | 
							shss | 
							⊢ ( 𝐴  ∈   Sℋ   →  𝐴  ⊆   ℋ )  | 
						
						
							| 44 | 
							
								16 43
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐴  ⊆   ℋ )  | 
						
						
							| 45 | 
							
								24 44
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝐴  ⊆   ℋ )  | 
						
						
							| 46 | 
							
								45 31
							 | 
							sseldd | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝑥  ∈   ℋ )  | 
						
						
							| 47 | 
							
								
							 | 
							shss | 
							⊢ ( 𝐵  ∈   Sℋ   →  𝐵  ⊆   ℋ )  | 
						
						
							| 48 | 
							
								18 47
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐵  ⊆   ℋ )  | 
						
						
							| 49 | 
							
								24 48
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝐵  ⊆   ℋ )  | 
						
						
							| 50 | 
							
								49 32
							 | 
							sseldd | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝑦  ∈   ℋ )  | 
						
						
							| 51 | 
							
								
							 | 
							ax-hvcom | 
							⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑥  +ℎ  𝑦 )  =  ( 𝑦  +ℎ  𝑥 ) )  | 
						
						
							| 52 | 
							
								46 50 51
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  ( 𝑥  +ℎ  𝑦 )  =  ( 𝑦  +ℎ  𝑥 ) )  | 
						
						
							| 53 | 
							
								23 52
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  ( 𝐻 ‘ 𝑘 )  =  ( 𝑦  +ℎ  𝑥 ) )  | 
						
						
							| 54 | 
							
								26 25 37 42 29 7 30 32 31 53
							 | 
							chscllem3 | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  𝑦  =  ( 𝐺 ‘ 𝑘 ) )  | 
						
						
							| 55 | 
							
								33 54
							 | 
							oveq12d | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  ( 𝑥  +ℎ  𝑦 )  =  ( ( 𝐹 ‘ 𝑘 )  +ℎ  ( 𝐺 ‘ 𝑘 ) ) )  | 
						
						
							| 56 | 
							
								23 55
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 ) )  →  ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 )  +ℎ  ( 𝐺 ‘ 𝑘 ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							3exp | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 )  →  ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 )  +ℎ  ( 𝐺 ‘ 𝑘 ) ) ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							rexlimdvv | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝐻 ‘ 𝑘 )  =  ( 𝑥  +ℎ  𝑦 )  →  ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 )  +ℎ  ( 𝐺 ‘ 𝑘 ) ) ) )  | 
						
						
							| 59 | 
							
								22 58
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 )  +ℎ  ( 𝐺 ‘ 𝑘 ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							mpteq2dva | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ  ↦  ( 𝐻 ‘ 𝑘 ) )  =  ( 𝑘  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑘 )  +ℎ  ( 𝐺 ‘ 𝑘 ) ) ) )  | 
						
						
							| 61 | 
							
								13 60
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  𝐻  =  ( 𝑘  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑘 )  +ℎ  ( 𝐺 ‘ 𝑘 ) ) ) )  | 
						
						
							| 62 | 
							
								1 2 3 4 5 6
							 | 
							chscllem1 | 
							⊢ ( 𝜑  →  𝐹 : ℕ ⟶ 𝐴 )  | 
						
						
							| 63 | 
							
								62 44
							 | 
							fssd | 
							⊢ ( 𝜑  →  𝐹 : ℕ ⟶  ℋ )  | 
						
						
							| 64 | 
							
								2 1 36 41 5 7
							 | 
							chscllem1 | 
							⊢ ( 𝜑  →  𝐺 : ℕ ⟶ 𝐵 )  | 
						
						
							| 65 | 
							
								64 48
							 | 
							fssd | 
							⊢ ( 𝜑  →  𝐺 : ℕ ⟶  ℋ )  | 
						
						
							| 66 | 
							
								1 2 3 4 5 6
							 | 
							chscllem2 | 
							⊢ ( 𝜑  →  𝐹  ∈  dom   ⇝𝑣  )  | 
						
						
							| 67 | 
							
								
							 | 
							funfvbrb | 
							⊢ ( Fun   ⇝𝑣   →  ( 𝐹  ∈  dom   ⇝𝑣   ↔  𝐹  ⇝𝑣  (  ⇝𝑣  ‘ 𝐹 ) ) )  | 
						
						
							| 68 | 
							
								10 67
							 | 
							ax-mp | 
							⊢ ( 𝐹  ∈  dom   ⇝𝑣   ↔  𝐹  ⇝𝑣  (  ⇝𝑣  ‘ 𝐹 ) )  | 
						
						
							| 69 | 
							
								66 68
							 | 
							sylib | 
							⊢ ( 𝜑  →  𝐹  ⇝𝑣  (  ⇝𝑣  ‘ 𝐹 ) )  | 
						
						
							| 70 | 
							
								2 1 36 41 5 7
							 | 
							chscllem2 | 
							⊢ ( 𝜑  →  𝐺  ∈  dom   ⇝𝑣  )  | 
						
						
							| 71 | 
							
								
							 | 
							funfvbrb | 
							⊢ ( Fun   ⇝𝑣   →  ( 𝐺  ∈  dom   ⇝𝑣   ↔  𝐺  ⇝𝑣  (  ⇝𝑣  ‘ 𝐺 ) ) )  | 
						
						
							| 72 | 
							
								10 71
							 | 
							ax-mp | 
							⊢ ( 𝐺  ∈  dom   ⇝𝑣   ↔  𝐺  ⇝𝑣  (  ⇝𝑣  ‘ 𝐺 ) )  | 
						
						
							| 73 | 
							
								70 72
							 | 
							sylib | 
							⊢ ( 𝜑  →  𝐺  ⇝𝑣  (  ⇝𝑣  ‘ 𝐺 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑘 )  +ℎ  ( 𝐺 ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑘 )  +ℎ  ( 𝐺 ‘ 𝑘 ) ) )  | 
						
						
							| 75 | 
							
								63 65 69 73 74
							 | 
							hlimadd | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑘 )  +ℎ  ( 𝐺 ‘ 𝑘 ) ) )  ⇝𝑣  ( (  ⇝𝑣  ‘ 𝐹 )  +ℎ  (  ⇝𝑣  ‘ 𝐺 ) ) )  | 
						
						
							| 76 | 
							
								61 75
							 | 
							eqbrtrd | 
							⊢ ( 𝜑  →  𝐻  ⇝𝑣  ( (  ⇝𝑣  ‘ 𝐹 )  +ℎ  (  ⇝𝑣  ‘ 𝐺 ) ) )  | 
						
						
							| 77 | 
							
								
							 | 
							funbrfv | 
							⊢ ( Fun   ⇝𝑣   →  ( 𝐻  ⇝𝑣  ( (  ⇝𝑣  ‘ 𝐹 )  +ℎ  (  ⇝𝑣  ‘ 𝐺 ) )  →  (  ⇝𝑣  ‘ 𝐻 )  =  ( (  ⇝𝑣  ‘ 𝐹 )  +ℎ  (  ⇝𝑣  ‘ 𝐺 ) ) ) )  | 
						
						
							| 78 | 
							
								10 76 77
							 | 
							mpsyl | 
							⊢ ( 𝜑  →  (  ⇝𝑣  ‘ 𝐻 )  =  ( (  ⇝𝑣  ‘ 𝐹 )  +ℎ  (  ⇝𝑣  ‘ 𝐺 ) ) )  | 
						
						
							| 79 | 
							
								12 78
							 | 
							eqtr3d | 
							⊢ ( 𝜑  →  𝑢  =  ( (  ⇝𝑣  ‘ 𝐹 )  +ℎ  (  ⇝𝑣  ‘ 𝐺 ) ) )  | 
						
						
							| 80 | 
							
								
							 | 
							fvex | 
							⊢ (  ⇝𝑣  ‘ 𝐹 )  ∈  V  | 
						
						
							| 81 | 
							
								80
							 | 
							chlimi | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐹 : ℕ ⟶ 𝐴  ∧  𝐹  ⇝𝑣  (  ⇝𝑣  ‘ 𝐹 ) )  →  (  ⇝𝑣  ‘ 𝐹 )  ∈  𝐴 )  | 
						
						
							| 82 | 
							
								1 62 69 81
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  (  ⇝𝑣  ‘ 𝐹 )  ∈  𝐴 )  | 
						
						
							| 83 | 
							
								
							 | 
							fvex | 
							⊢ (  ⇝𝑣  ‘ 𝐺 )  ∈  V  | 
						
						
							| 84 | 
							
								83
							 | 
							chlimi | 
							⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝐺 : ℕ ⟶ 𝐵  ∧  𝐺  ⇝𝑣  (  ⇝𝑣  ‘ 𝐺 ) )  →  (  ⇝𝑣  ‘ 𝐺 )  ∈  𝐵 )  | 
						
						
							| 85 | 
							
								2 64 73 84
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  (  ⇝𝑣  ‘ 𝐺 )  ∈  𝐵 )  | 
						
						
							| 86 | 
							
								
							 | 
							shsva | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( ( (  ⇝𝑣  ‘ 𝐹 )  ∈  𝐴  ∧  (  ⇝𝑣  ‘ 𝐺 )  ∈  𝐵 )  →  ( (  ⇝𝑣  ‘ 𝐹 )  +ℎ  (  ⇝𝑣  ‘ 𝐺 ) )  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  | 
						
						
							| 87 | 
							
								16 18 86
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( (  ⇝𝑣  ‘ 𝐹 )  ∈  𝐴  ∧  (  ⇝𝑣  ‘ 𝐺 )  ∈  𝐵 )  →  ( (  ⇝𝑣  ‘ 𝐹 )  +ℎ  (  ⇝𝑣  ‘ 𝐺 ) )  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  | 
						
						
							| 88 | 
							
								82 85 87
							 | 
							mp2and | 
							⊢ ( 𝜑  →  ( (  ⇝𝑣  ‘ 𝐹 )  +ℎ  (  ⇝𝑣  ‘ 𝐺 ) )  ∈  ( 𝐴  +ℋ  𝐵 ) )  | 
						
						
							| 89 | 
							
								79 88
							 | 
							eqeltrd | 
							⊢ ( 𝜑  →  𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) )  |