Step |
Hyp |
Ref |
Expression |
1 |
|
chscl.1 |
⊢ ( 𝜑 → 𝐴 ∈ Cℋ ) |
2 |
|
chscl.2 |
⊢ ( 𝜑 → 𝐵 ∈ Cℋ ) |
3 |
|
chscl.3 |
⊢ ( 𝜑 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) |
4 |
|
chscl.4 |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) |
5 |
|
chscl.5 |
⊢ ( 𝜑 → 𝐻 ⇝𝑣 𝑢 ) |
6 |
|
chscl.6 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ) |
7 |
|
chscl.7 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( ( projℎ ‘ 𝐵 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ) |
8 |
|
hlimf |
⊢ ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ |
9 |
|
ffun |
⊢ ( ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 ) |
10 |
8 9
|
ax-mp |
⊢ Fun ⇝𝑣 |
11 |
|
funbrfv |
⊢ ( Fun ⇝𝑣 → ( 𝐻 ⇝𝑣 𝑢 → ( ⇝𝑣 ‘ 𝐻 ) = 𝑢 ) ) |
12 |
10 5 11
|
mpsyl |
⊢ ( 𝜑 → ( ⇝𝑣 ‘ 𝐻 ) = 𝑢 ) |
13 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐻 = ( 𝑘 ∈ ℕ ↦ ( 𝐻 ‘ 𝑘 ) ) ) |
14 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
15 |
|
chsh |
⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) |
16 |
1 15
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ Sℋ ) |
17 |
|
chsh |
⊢ ( 𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) |
18 |
2 17
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ Sℋ ) |
19 |
|
shsel |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) ) |
20 |
16 18 19
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) ) |
21 |
20
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝐻 ‘ 𝑘 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) |
22 |
14 21
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) |
23 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) |
24 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝜑 ) |
25 |
24 1
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐴 ∈ Cℋ ) |
26 |
24 2
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐵 ∈ Cℋ ) |
27 |
24 3
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) |
28 |
24 4
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) |
29 |
24 5
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐻 ⇝𝑣 𝑢 ) |
30 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝑘 ∈ ℕ ) |
31 |
|
simp2l |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝑥 ∈ 𝐴 ) |
32 |
|
simp2r |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝑦 ∈ 𝐵 ) |
33 |
25 26 27 28 29 6 30 31 32 23
|
chscllem3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝑥 = ( 𝐹 ‘ 𝑘 ) ) |
34 |
|
chsscon2 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ↔ 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
35 |
2 1 34
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ↔ 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
36 |
3 35
|
mpbid |
⊢ ( 𝜑 → 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) |
37 |
24 36
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) |
38 |
|
shscom |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) |
39 |
16 18 38
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) |
40 |
39
|
feq3d |
⊢ ( 𝜑 → ( 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ↔ 𝐻 : ℕ ⟶ ( 𝐵 +ℋ 𝐴 ) ) ) |
41 |
4 40
|
mpbid |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 𝐵 +ℋ 𝐴 ) ) |
42 |
24 41
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐻 : ℕ ⟶ ( 𝐵 +ℋ 𝐴 ) ) |
43 |
|
shss |
⊢ ( 𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ ) |
44 |
16 43
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℋ ) |
45 |
24 44
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐴 ⊆ ℋ ) |
46 |
45 31
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝑥 ∈ ℋ ) |
47 |
|
shss |
⊢ ( 𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ ) |
48 |
18 47
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ ℋ ) |
49 |
24 48
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝐵 ⊆ ℋ ) |
50 |
49 32
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝑦 ∈ ℋ ) |
51 |
|
ax-hvcom |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) |
52 |
46 50 51
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) |
53 |
23 52
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝑦 +ℎ 𝑥 ) ) |
54 |
26 25 37 42 29 7 30 32 31 53
|
chscllem3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → 𝑦 = ( 𝐺 ‘ 𝑘 ) ) |
55 |
33 54
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝑥 +ℎ 𝑦 ) = ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) |
56 |
23 55
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) |
57 |
56
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
58 |
57
|
rexlimdvv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐻 ‘ 𝑘 ) = ( 𝑥 +ℎ 𝑦 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) ) |
59 |
22 58
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) |
60 |
59
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ ( 𝐻 ‘ 𝑘 ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) ) |
61 |
13 60
|
eqtrd |
⊢ ( 𝜑 → 𝐻 = ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) ) |
62 |
1 2 3 4 5 6
|
chscllem1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝐴 ) |
63 |
62 44
|
fssd |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℋ ) |
64 |
2 1 36 41 5 7
|
chscllem1 |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝐵 ) |
65 |
64 48
|
fssd |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ℋ ) |
66 |
1 2 3 4 5 6
|
chscllem2 |
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝𝑣 ) |
67 |
|
funfvbrb |
⊢ ( Fun ⇝𝑣 → ( 𝐹 ∈ dom ⇝𝑣 ↔ 𝐹 ⇝𝑣 ( ⇝𝑣 ‘ 𝐹 ) ) ) |
68 |
10 67
|
ax-mp |
⊢ ( 𝐹 ∈ dom ⇝𝑣 ↔ 𝐹 ⇝𝑣 ( ⇝𝑣 ‘ 𝐹 ) ) |
69 |
66 68
|
sylib |
⊢ ( 𝜑 → 𝐹 ⇝𝑣 ( ⇝𝑣 ‘ 𝐹 ) ) |
70 |
2 1 36 41 5 7
|
chscllem2 |
⊢ ( 𝜑 → 𝐺 ∈ dom ⇝𝑣 ) |
71 |
|
funfvbrb |
⊢ ( Fun ⇝𝑣 → ( 𝐺 ∈ dom ⇝𝑣 ↔ 𝐺 ⇝𝑣 ( ⇝𝑣 ‘ 𝐺 ) ) ) |
72 |
10 71
|
ax-mp |
⊢ ( 𝐺 ∈ dom ⇝𝑣 ↔ 𝐺 ⇝𝑣 ( ⇝𝑣 ‘ 𝐺 ) ) |
73 |
70 72
|
sylib |
⊢ ( 𝜑 → 𝐺 ⇝𝑣 ( ⇝𝑣 ‘ 𝐺 ) ) |
74 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) |
75 |
63 65 69 73 74
|
hlimadd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑘 ) +ℎ ( 𝐺 ‘ 𝑘 ) ) ) ⇝𝑣 ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ) |
76 |
61 75
|
eqbrtrd |
⊢ ( 𝜑 → 𝐻 ⇝𝑣 ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ) |
77 |
|
funbrfv |
⊢ ( Fun ⇝𝑣 → ( 𝐻 ⇝𝑣 ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) → ( ⇝𝑣 ‘ 𝐻 ) = ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ) ) |
78 |
10 76 77
|
mpsyl |
⊢ ( 𝜑 → ( ⇝𝑣 ‘ 𝐻 ) = ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ) |
79 |
12 78
|
eqtr3d |
⊢ ( 𝜑 → 𝑢 = ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ) |
80 |
|
fvex |
⊢ ( ⇝𝑣 ‘ 𝐹 ) ∈ V |
81 |
80
|
chlimi |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐹 : ℕ ⟶ 𝐴 ∧ 𝐹 ⇝𝑣 ( ⇝𝑣 ‘ 𝐹 ) ) → ( ⇝𝑣 ‘ 𝐹 ) ∈ 𝐴 ) |
82 |
1 62 69 81
|
syl3anc |
⊢ ( 𝜑 → ( ⇝𝑣 ‘ 𝐹 ) ∈ 𝐴 ) |
83 |
|
fvex |
⊢ ( ⇝𝑣 ‘ 𝐺 ) ∈ V |
84 |
83
|
chlimi |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐺 : ℕ ⟶ 𝐵 ∧ 𝐺 ⇝𝑣 ( ⇝𝑣 ‘ 𝐺 ) ) → ( ⇝𝑣 ‘ 𝐺 ) ∈ 𝐵 ) |
85 |
2 64 73 84
|
syl3anc |
⊢ ( 𝜑 → ( ⇝𝑣 ‘ 𝐺 ) ∈ 𝐵 ) |
86 |
|
shsva |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( ( ⇝𝑣 ‘ 𝐹 ) ∈ 𝐴 ∧ ( ⇝𝑣 ‘ 𝐺 ) ∈ 𝐵 ) → ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
87 |
16 18 86
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ⇝𝑣 ‘ 𝐹 ) ∈ 𝐴 ∧ ( ⇝𝑣 ‘ 𝐺 ) ∈ 𝐵 ) → ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
88 |
82 85 87
|
mp2and |
⊢ ( 𝜑 → ( ( ⇝𝑣 ‘ 𝐹 ) +ℎ ( ⇝𝑣 ‘ 𝐺 ) ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
89 |
79 88
|
eqeltrd |
⊢ ( 𝜑 → 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ) |