Metamath Proof Explorer
		
		
		
		Description:  Membership in subspace sum.  (Contributed by NM, 19-Oct-1999)
         (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						ch0le.1 | 
						⊢ 𝐴  ∈   Cℋ   | 
					
					
						 | 
						 | 
						chjcl.2 | 
						⊢ 𝐵  ∈   Cℋ   | 
					
				
					 | 
					Assertion | 
					chseli | 
					⊢  ( 𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ch0le.1 | 
							⊢ 𝐴  ∈   Cℋ   | 
						
						
							| 2 | 
							
								
							 | 
							chjcl.2 | 
							⊢ 𝐵  ∈   Cℋ   | 
						
						
							| 3 | 
							
								1
							 | 
							chshii | 
							⊢ 𝐴  ∈   Sℋ   | 
						
						
							| 4 | 
							
								2
							 | 
							chshii | 
							⊢ 𝐵  ∈   Sℋ   | 
						
						
							| 5 | 
							
								3 4
							 | 
							shseli | 
							⊢ ( 𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 ) )  |