Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chsh | ⊢ ( 𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isch | ⊢ ( 𝐻 ∈ Cℋ ↔ ( 𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) ⊆ 𝐻 ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |