Metamath Proof Explorer


Theorem chslej

Description: Subspace sum is smaller than subspace join. Remark in Kalmbach p. 65. (Contributed by NM, 12-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion chslej ( ( 𝐴C𝐵C ) → ( 𝐴 + 𝐵 ) ⊆ ( 𝐴 𝐵 ) )

Proof

Step Hyp Ref Expression
1 chsh ( 𝐴C𝐴S )
2 chsh ( 𝐵C𝐵S )
3 shslej ( ( 𝐴S𝐵S ) → ( 𝐴 + 𝐵 ) ⊆ ( 𝐴 𝐵 ) )
4 1 2 3 syl2an ( ( 𝐴C𝐵C ) → ( 𝐴 + 𝐵 ) ⊆ ( 𝐴 𝐵 ) )