Metamath Proof Explorer
		
		
		
		Description:  Subspace sum is smaller than subspace join.  Remark in Kalmbach p. 65.
     (Contributed by NM, 12-Jul-2004)  (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					chslej | 
					⊢  ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  +ℋ  𝐵 )  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							chsh | 
							⊢ ( 𝐴  ∈   Cℋ   →  𝐴  ∈   Sℋ  )  | 
						
						
							| 2 | 
							
								
							 | 
							chsh | 
							⊢ ( 𝐵  ∈   Cℋ   →  𝐵  ∈   Sℋ  )  | 
						
						
							| 3 | 
							
								
							 | 
							shslej | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐴  +ℋ  𝐵 )  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2an | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  +ℋ  𝐵 )  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  |