Metamath Proof Explorer


Theorem chsleji

Description: Subspace sum is smaller than subspace join. Remark in Kalmbach p. 65. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion chsleji ( 𝐴 + 𝐵 ) ⊆ ( 𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 chjcl.2 𝐵C
3 1 chshii 𝐴S
4 2 chshii 𝐵S
5 3 4 shsleji ( 𝐴 + 𝐵 ) ⊆ ( 𝐴 𝐵 )