Metamath Proof Explorer
		
		
		
		Description:  Hilbert lattice contraposition law.  (Contributed by NM, 21-Jun-2004)
     (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					chsscon2 | 
					⊢  ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ⊆  ( ⊥ ‘ 𝐵 )  ↔  𝐵  ⊆  ( ⊥ ‘ 𝐴 ) ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							chss | 
							⊢ ( 𝐴  ∈   Cℋ   →  𝐴  ⊆   ℋ )  | 
						
						
							| 2 | 
							
								
							 | 
							chss | 
							⊢ ( 𝐵  ∈   Cℋ   →  𝐵  ⊆   ℋ )  | 
						
						
							| 3 | 
							
								
							 | 
							occon3 | 
							⊢ ( ( 𝐴  ⊆   ℋ  ∧  𝐵  ⊆   ℋ )  →  ( 𝐴  ⊆  ( ⊥ ‘ 𝐵 )  ↔  𝐵  ⊆  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2an | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ⊆  ( ⊥ ‘ 𝐵 )  ↔  𝐵  ⊆  ( ⊥ ‘ 𝐴 ) ) )  |