Metamath Proof Explorer
Description: Hilbert lattice contraposition law. (Contributed by NM, 21-Jun-2004)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
chsscon2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
chss |
⊢ ( 𝐴 ∈ Cℋ → 𝐴 ⊆ ℋ ) |
2 |
|
chss |
⊢ ( 𝐵 ∈ Cℋ → 𝐵 ⊆ ℋ ) |
3 |
|
occon3 |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |