Metamath Proof Explorer


Theorem chsscon2i

Description: Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion chsscon2i ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 chjcl.2 𝐵C
3 1 chssii 𝐴 ⊆ ℋ
4 2 chssii 𝐵 ⊆ ℋ
5 occon3 ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) )
6 3 4 5 mp2an ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) )