Metamath Proof Explorer
		
		
		
		Description:  Hilbert lattice contraposition law.  (Contributed by NM, 15-Oct-1999)
         (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						ch0le.1 | 
						⊢ 𝐴  ∈   Cℋ   | 
					
					
						 | 
						 | 
						chjcl.2 | 
						⊢ 𝐵  ∈   Cℋ   | 
					
				
					 | 
					Assertion | 
					chsscon2i | 
					⊢  ( 𝐴  ⊆  ( ⊥ ‘ 𝐵 )  ↔  𝐵  ⊆  ( ⊥ ‘ 𝐴 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ch0le.1 | 
							⊢ 𝐴  ∈   Cℋ   | 
						
						
							| 2 | 
							
								
							 | 
							chjcl.2 | 
							⊢ 𝐵  ∈   Cℋ   | 
						
						
							| 3 | 
							
								1
							 | 
							chssii | 
							⊢ 𝐴  ⊆   ℋ  | 
						
						
							| 4 | 
							
								2
							 | 
							chssii | 
							⊢ 𝐵  ⊆   ℋ  | 
						
						
							| 5 | 
							
								
							 | 
							occon3 | 
							⊢ ( ( 𝐴  ⊆   ℋ  ∧  𝐵  ⊆   ℋ )  →  ( 𝐴  ⊆  ( ⊥ ‘ 𝐵 )  ↔  𝐵  ⊆  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							mp2an | 
							⊢ ( 𝐴  ⊆  ( ⊥ ‘ 𝐵 )  ↔  𝐵  ⊆  ( ⊥ ‘ 𝐴 ) )  |