| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sseq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ⊆ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ) ) |
| 2 |
|
fveq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) |
| 3 |
2
|
sseq2d |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) ) |
| 4 |
1 3
|
bibi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( 𝐴 ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) ) ) |
| 5 |
|
sseq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ⊥ ‘ 𝐵 ) = ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 7 |
6
|
sseq1d |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ↔ ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ⊆ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) ) |
| 8 |
5 7
|
bibi12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ↔ ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ⊆ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) ) ) |
| 9 |
|
ifchhv |
⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∈ Cℋ |
| 10 |
|
ifchhv |
⊢ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∈ Cℋ |
| 11 |
9 10
|
chsscon3i |
⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ↔ ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ⊆ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) |
| 12 |
4 8 11
|
dedth2h |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |