Step |
Hyp |
Ref |
Expression |
1 |
|
ch0le.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
chjcl.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
1
|
chssii |
⊢ 𝐴 ⊆ ℋ |
4 |
2
|
chssii |
⊢ 𝐵 ⊆ ℋ |
5 |
|
occon |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ⊆ 𝐵 → ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
6 |
3 4 5
|
mp2an |
⊢ ( 𝐴 ⊆ 𝐵 → ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) |
7 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
8 |
7
|
chssii |
⊢ ( ⊥ ‘ 𝐵 ) ⊆ ℋ |
9 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
10 |
9
|
chssii |
⊢ ( ⊥ ‘ 𝐴 ) ⊆ ℋ |
11 |
|
occon |
⊢ ( ( ( ⊥ ‘ 𝐵 ) ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
12 |
8 10 11
|
mp2an |
⊢ ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
13 |
1
|
pjococi |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 |
14 |
2
|
pjococi |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 |
15 |
12 13 14
|
3sstr3g |
⊢ ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → 𝐴 ⊆ 𝐵 ) |
16 |
6 15
|
impbii |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) |