| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							inidm | 
							⊢ ( 𝐴  ∩  𝐴 )  =  𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							sslin | 
							⊢ ( 𝐴  ⊆  ( ⊥ ‘ 𝐴 )  →  ( 𝐴  ∩  𝐴 )  ⊆  ( 𝐴  ∩  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							eqsstrrid | 
							⊢ ( 𝐴  ⊆  ( ⊥ ‘ 𝐴 )  →  𝐴  ⊆  ( 𝐴  ∩  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							chocin | 
							⊢ ( 𝐴  ∈   Cℋ   →  ( 𝐴  ∩  ( ⊥ ‘ 𝐴 ) )  =  0ℋ )  | 
						
						
							| 5 | 
							
								4
							 | 
							sseq2d | 
							⊢ ( 𝐴  ∈   Cℋ   →  ( 𝐴  ⊆  ( 𝐴  ∩  ( ⊥ ‘ 𝐴 ) )  ↔  𝐴  ⊆  0ℋ ) )  | 
						
						
							| 6 | 
							
								
							 | 
							chle0 | 
							⊢ ( 𝐴  ∈   Cℋ   →  ( 𝐴  ⊆  0ℋ  ↔  𝐴  =  0ℋ ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							bitrd | 
							⊢ ( 𝐴  ∈   Cℋ   →  ( 𝐴  ⊆  ( 𝐴  ∩  ( ⊥ ‘ 𝐴 ) )  ↔  𝐴  =  0ℋ ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							imbitrid | 
							⊢ ( 𝐴  ∈   Cℋ   →  ( 𝐴  ⊆  ( ⊥ ‘ 𝐴 )  →  𝐴  =  0ℋ ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐴  =  0ℋ )  →  𝐴  =  0ℋ )  | 
						
						
							| 10 | 
							
								
							 | 
							choccl | 
							⊢ ( 𝐴  ∈   Cℋ   →  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  )  | 
						
						
							| 11 | 
							
								
							 | 
							ch0le | 
							⊢ ( ( ⊥ ‘ 𝐴 )  ∈   Cℋ   →  0ℋ  ⊆  ( ⊥ ‘ 𝐴 ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl | 
							⊢ ( 𝐴  ∈   Cℋ   →  0ℋ  ⊆  ( ⊥ ‘ 𝐴 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐴  =  0ℋ )  →  0ℋ  ⊆  ( ⊥ ‘ 𝐴 ) )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							eqsstrd | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐴  =  0ℋ )  →  𝐴  ⊆  ( ⊥ ‘ 𝐴 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ex | 
							⊢ ( 𝐴  ∈   Cℋ   →  ( 𝐴  =  0ℋ  →  𝐴  ⊆  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 16 | 
							
								8 15
							 | 
							impbid | 
							⊢ ( 𝐴  ∈   Cℋ   →  ( 𝐴  ⊆  ( ⊥ ‘ 𝐴 )  ↔  𝐴  =  0ℋ ) )  |