| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ss | ⊢ ∅  ⊆  { 0ℋ } | 
						
							| 2 |  | 0ss | ⊢ ∅  ⊆   Cℋ | 
						
							| 3 |  | h0elch | ⊢ 0ℋ  ∈   Cℋ | 
						
							| 4 |  | snssi | ⊢ ( 0ℋ  ∈   Cℋ   →  { 0ℋ }  ⊆   Cℋ  ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ { 0ℋ }  ⊆   Cℋ | 
						
							| 6 |  | chsupss | ⊢ ( ( ∅  ⊆   Cℋ   ∧  { 0ℋ }  ⊆   Cℋ  )  →  ( ∅  ⊆  { 0ℋ }  →  (  ∨ℋ  ‘ ∅ )  ⊆  (  ∨ℋ  ‘ { 0ℋ } ) ) ) | 
						
							| 7 | 2 5 6 | mp2an | ⊢ ( ∅  ⊆  { 0ℋ }  →  (  ∨ℋ  ‘ ∅ )  ⊆  (  ∨ℋ  ‘ { 0ℋ } ) ) | 
						
							| 8 | 1 7 | ax-mp | ⊢ (  ∨ℋ  ‘ ∅ )  ⊆  (  ∨ℋ  ‘ { 0ℋ } ) | 
						
							| 9 |  | chsupsn | ⊢ ( 0ℋ  ∈   Cℋ   →  (  ∨ℋ  ‘ { 0ℋ } )  =  0ℋ ) | 
						
							| 10 | 3 9 | ax-mp | ⊢ (  ∨ℋ  ‘ { 0ℋ } )  =  0ℋ | 
						
							| 11 | 8 10 | sseqtri | ⊢ (  ∨ℋ  ‘ ∅ )  ⊆  0ℋ | 
						
							| 12 |  | chsupcl | ⊢ ( ∅  ⊆   Cℋ   →  (  ∨ℋ  ‘ ∅ )  ∈   Cℋ  ) | 
						
							| 13 | 2 12 | ax-mp | ⊢ (  ∨ℋ  ‘ ∅ )  ∈   Cℋ | 
						
							| 14 | 13 | chle0i | ⊢ ( (  ∨ℋ  ‘ ∅ )  ⊆  0ℋ  ↔  (  ∨ℋ  ‘ ∅ )  =  0ℋ ) | 
						
							| 15 | 11 14 | mpbi | ⊢ (  ∨ℋ  ‘ ∅ )  =  0ℋ |