Metamath Proof Explorer


Theorem chsup0

Description: The supremum of the empty set. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)

Ref Expression
Assertion chsup0 ( ‘ ∅ ) = 0

Proof

Step Hyp Ref Expression
1 0ss ∅ ⊆ { 0 }
2 0ss ∅ ⊆ C
3 h0elch 0C
4 snssi ( 0C → { 0 } ⊆ C )
5 3 4 ax-mp { 0 } ⊆ C
6 chsupss ( ( ∅ ⊆ C ∧ { 0 } ⊆ C ) → ( ∅ ⊆ { 0 } → ( ‘ ∅ ) ⊆ ( ‘ { 0 } ) ) )
7 2 5 6 mp2an ( ∅ ⊆ { 0 } → ( ‘ ∅ ) ⊆ ( ‘ { 0 } ) )
8 1 7 ax-mp ( ‘ ∅ ) ⊆ ( ‘ { 0 } )
9 chsupsn ( 0C → ( ‘ { 0 } ) = 0 )
10 3 9 ax-mp ( ‘ { 0 } ) = 0
11 8 10 sseqtri ( ‘ ∅ ) ⊆ 0
12 chsupcl ( ∅ ⊆ C → ( ‘ ∅ ) ∈ C )
13 2 12 ax-mp ( ‘ ∅ ) ∈ C
14 13 chle0i ( ( ‘ ∅ ) ⊆ 0 ↔ ( ‘ ∅ ) = 0 )
15 11 14 mpbi ( ‘ ∅ ) = 0