Step |
Hyp |
Ref |
Expression |
1 |
|
0ss |
⊢ ∅ ⊆ { 0ℋ } |
2 |
|
0ss |
⊢ ∅ ⊆ Cℋ |
3 |
|
h0elch |
⊢ 0ℋ ∈ Cℋ |
4 |
|
snssi |
⊢ ( 0ℋ ∈ Cℋ → { 0ℋ } ⊆ Cℋ ) |
5 |
3 4
|
ax-mp |
⊢ { 0ℋ } ⊆ Cℋ |
6 |
|
chsupss |
⊢ ( ( ∅ ⊆ Cℋ ∧ { 0ℋ } ⊆ Cℋ ) → ( ∅ ⊆ { 0ℋ } → ( ∨ℋ ‘ ∅ ) ⊆ ( ∨ℋ ‘ { 0ℋ } ) ) ) |
7 |
2 5 6
|
mp2an |
⊢ ( ∅ ⊆ { 0ℋ } → ( ∨ℋ ‘ ∅ ) ⊆ ( ∨ℋ ‘ { 0ℋ } ) ) |
8 |
1 7
|
ax-mp |
⊢ ( ∨ℋ ‘ ∅ ) ⊆ ( ∨ℋ ‘ { 0ℋ } ) |
9 |
|
chsupsn |
⊢ ( 0ℋ ∈ Cℋ → ( ∨ℋ ‘ { 0ℋ } ) = 0ℋ ) |
10 |
3 9
|
ax-mp |
⊢ ( ∨ℋ ‘ { 0ℋ } ) = 0ℋ |
11 |
8 10
|
sseqtri |
⊢ ( ∨ℋ ‘ ∅ ) ⊆ 0ℋ |
12 |
|
chsupcl |
⊢ ( ∅ ⊆ Cℋ → ( ∨ℋ ‘ ∅ ) ∈ Cℋ ) |
13 |
2 12
|
ax-mp |
⊢ ( ∨ℋ ‘ ∅ ) ∈ Cℋ |
14 |
13
|
chle0i |
⊢ ( ( ∨ℋ ‘ ∅ ) ⊆ 0ℋ ↔ ( ∨ℋ ‘ ∅ ) = 0ℋ ) |
15 |
11 14
|
mpbi |
⊢ ( ∨ℋ ‘ ∅ ) = 0ℋ |