Metamath Proof Explorer


Theorem chsupcl

Description: Closure of supremum of subset of CH . Definition of supremum in Proposition 1 of Kalmbach p. 65. Shows that CH is a complete lattice. Also part of Definition 3.4-1 in MegPav2000 p. 2345 (PDF p. 8). (Contributed by NM, 10-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion chsupcl ( 𝐴C → ( 𝐴 ) ∈ C )

Proof

Step Hyp Ref Expression
1 chsspwh C ⊆ 𝒫 ℋ
2 sstr2 ( 𝐴C → ( C ⊆ 𝒫 ℋ → 𝐴 ⊆ 𝒫 ℋ ) )
3 1 2 mpi ( 𝐴C𝐴 ⊆ 𝒫 ℋ )
4 hsupcl ( 𝐴 ⊆ 𝒫 ℋ → ( 𝐴 ) ∈ C )
5 3 4 syl ( 𝐴C → ( 𝐴 ) ∈ C )