Metamath Proof Explorer


Theorem chsupid

Description: A subspace is the supremum of all smaller subspaces. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)

Ref Expression
Assertion chsupid ( 𝐴C → ( ‘ { 𝑥C𝑥𝐴 } ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 ssrab2 { 𝑥C𝑥𝐴 } ⊆ C
2 chsupval2 ( { 𝑥C𝑥𝐴 } ⊆ C → ( ‘ { 𝑥C𝑥𝐴 } ) = { 𝑦C { 𝑥C𝑥𝐴 } ⊆ 𝑦 } )
3 1 2 ax-mp ( ‘ { 𝑥C𝑥𝐴 } ) = { 𝑦C { 𝑥C𝑥𝐴 } ⊆ 𝑦 }
4 unimax ( 𝐴C { 𝑥C𝑥𝐴 } = 𝐴 )
5 4 sseq1d ( 𝐴C → ( { 𝑥C𝑥𝐴 } ⊆ 𝑦𝐴𝑦 ) )
6 5 rabbidv ( 𝐴C → { 𝑦C { 𝑥C𝑥𝐴 } ⊆ 𝑦 } = { 𝑦C𝐴𝑦 } )
7 6 inteqd ( 𝐴C { 𝑦C { 𝑥C𝑥𝐴 } ⊆ 𝑦 } = { 𝑦C𝐴𝑦 } )
8 intmin ( 𝐴C { 𝑦C𝐴𝑦 } = 𝐴 )
9 7 8 eqtrd ( 𝐴C { 𝑦C { 𝑥C𝑥𝐴 } ⊆ 𝑦 } = 𝐴 )
10 3 9 syl5eq ( 𝐴C → ( ‘ { 𝑥C𝑥𝐴 } ) = 𝐴 )