| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssrab2 |
⊢ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ |
| 2 |
|
chsupval2 |
⊢ ( { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ → ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) = ∩ { 𝑦 ∈ Cℋ ∣ ∪ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝑦 } ) |
| 3 |
1 2
|
ax-mp |
⊢ ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) = ∩ { 𝑦 ∈ Cℋ ∣ ∪ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝑦 } |
| 4 |
|
unimax |
⊢ ( 𝐴 ∈ Cℋ → ∪ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } = 𝐴 ) |
| 5 |
4
|
sseq1d |
⊢ ( 𝐴 ∈ Cℋ → ( ∪ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑦 ) ) |
| 6 |
5
|
rabbidv |
⊢ ( 𝐴 ∈ Cℋ → { 𝑦 ∈ Cℋ ∣ ∪ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝑦 } = { 𝑦 ∈ Cℋ ∣ 𝐴 ⊆ 𝑦 } ) |
| 7 |
6
|
inteqd |
⊢ ( 𝐴 ∈ Cℋ → ∩ { 𝑦 ∈ Cℋ ∣ ∪ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝑦 } = ∩ { 𝑦 ∈ Cℋ ∣ 𝐴 ⊆ 𝑦 } ) |
| 8 |
|
intmin |
⊢ ( 𝐴 ∈ Cℋ → ∩ { 𝑦 ∈ Cℋ ∣ 𝐴 ⊆ 𝑦 } = 𝐴 ) |
| 9 |
7 8
|
eqtrd |
⊢ ( 𝐴 ∈ Cℋ → ∩ { 𝑦 ∈ Cℋ ∣ ∪ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝑦 } = 𝐴 ) |
| 10 |
3 9
|
eqtrid |
⊢ ( 𝐴 ∈ Cℋ → ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) = 𝐴 ) |