Description: Subset relation for supremum of subset of CH . (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chsupss | ⊢ ( ( 𝐴 ⊆ Cℋ ∧ 𝐵 ⊆ Cℋ ) → ( 𝐴 ⊆ 𝐵 → ( ∨ℋ ‘ 𝐴 ) ⊆ ( ∨ℋ ‘ 𝐵 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | chsspwh | ⊢ Cℋ ⊆ 𝒫 ℋ | |
| 2 | sstr2 | ⊢ ( 𝐴 ⊆ Cℋ → ( Cℋ ⊆ 𝒫 ℋ → 𝐴 ⊆ 𝒫 ℋ ) ) | |
| 3 | 1 2 | mpi | ⊢ ( 𝐴 ⊆ Cℋ → 𝐴 ⊆ 𝒫 ℋ ) | 
| 4 | sstr2 | ⊢ ( 𝐵 ⊆ Cℋ → ( Cℋ ⊆ 𝒫 ℋ → 𝐵 ⊆ 𝒫 ℋ ) ) | |
| 5 | 1 4 | mpi | ⊢ ( 𝐵 ⊆ Cℋ → 𝐵 ⊆ 𝒫 ℋ ) | 
| 6 | hsupss | ⊢ ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( 𝐴 ⊆ 𝐵 → ( ∨ℋ ‘ 𝐴 ) ⊆ ( ∨ℋ ‘ 𝐵 ) ) ) | |
| 7 | 3 5 6 | syl2an | ⊢ ( ( 𝐴 ⊆ Cℋ ∧ 𝐵 ⊆ Cℋ ) → ( 𝐴 ⊆ 𝐵 → ( ∨ℋ ‘ 𝐴 ) ⊆ ( ∨ℋ ‘ 𝐵 ) ) ) |