Metamath Proof Explorer


Theorem chsupss

Description: Subset relation for supremum of subset of CH . (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)

Ref Expression
Assertion chsupss ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 → ( 𝐴 ) ⊆ ( 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 chsspwh C ⊆ 𝒫 ℋ
2 sstr2 ( 𝐴C → ( C ⊆ 𝒫 ℋ → 𝐴 ⊆ 𝒫 ℋ ) )
3 1 2 mpi ( 𝐴C𝐴 ⊆ 𝒫 ℋ )
4 sstr2 ( 𝐵C → ( C ⊆ 𝒫 ℋ → 𝐵 ⊆ 𝒫 ℋ ) )
5 1 4 mpi ( 𝐵C𝐵 ⊆ 𝒫 ℋ )
6 hsupss ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( 𝐴𝐵 → ( 𝐴 ) ⊆ ( 𝐵 ) ) )
7 3 5 6 syl2an ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 → ( 𝐴 ) ⊆ ( 𝐵 ) ) )