Metamath Proof Explorer


Theorem chsupval2

Description: The value of the supremum of a set of closed subspaces of Hilbert space. Definition of supremum in Proposition 1 of Kalmbach p. 65. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)

Ref Expression
Assertion chsupval2 ( 𝐴C → ( 𝐴 ) = { 𝑥C 𝐴𝑥 } )

Proof

Step Hyp Ref Expression
1 chsspwh C ⊆ 𝒫 ℋ
2 sstr2 ( 𝐴C → ( C ⊆ 𝒫 ℋ → 𝐴 ⊆ 𝒫 ℋ ) )
3 1 2 mpi ( 𝐴C𝐴 ⊆ 𝒫 ℋ )
4 hsupval2 ( 𝐴 ⊆ 𝒫 ℋ → ( 𝐴 ) = { 𝑥C 𝐴𝑥 } )
5 3 4 syl ( 𝐴C → ( 𝐴 ) = { 𝑥C 𝐴𝑥 } )