Step |
Hyp |
Ref |
Expression |
1 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
2 |
1
|
fveq2i |
⊢ ( θ ‘ 3 ) = ( θ ‘ ( 2 + 1 ) ) |
3 |
|
2z |
⊢ 2 ∈ ℤ |
4 |
|
3prm |
⊢ 3 ∈ ℙ |
5 |
1 4
|
eqeltrri |
⊢ ( 2 + 1 ) ∈ ℙ |
6 |
|
chtprm |
⊢ ( ( 2 ∈ ℤ ∧ ( 2 + 1 ) ∈ ℙ ) → ( θ ‘ ( 2 + 1 ) ) = ( ( θ ‘ 2 ) + ( log ‘ ( 2 + 1 ) ) ) ) |
7 |
3 5 6
|
mp2an |
⊢ ( θ ‘ ( 2 + 1 ) ) = ( ( θ ‘ 2 ) + ( log ‘ ( 2 + 1 ) ) ) |
8 |
|
2rp |
⊢ 2 ∈ ℝ+ |
9 |
|
3rp |
⊢ 3 ∈ ℝ+ |
10 |
|
relogmul |
⊢ ( ( 2 ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( log ‘ ( 2 · 3 ) ) = ( ( log ‘ 2 ) + ( log ‘ 3 ) ) ) |
11 |
8 9 10
|
mp2an |
⊢ ( log ‘ ( 2 · 3 ) ) = ( ( log ‘ 2 ) + ( log ‘ 3 ) ) |
12 |
|
3cn |
⊢ 3 ∈ ℂ |
13 |
|
2cn |
⊢ 2 ∈ ℂ |
14 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
15 |
12 13 14
|
mulcomli |
⊢ ( 2 · 3 ) = 6 |
16 |
15
|
fveq2i |
⊢ ( log ‘ ( 2 · 3 ) ) = ( log ‘ 6 ) |
17 |
|
cht2 |
⊢ ( θ ‘ 2 ) = ( log ‘ 2 ) |
18 |
17
|
eqcomi |
⊢ ( log ‘ 2 ) = ( θ ‘ 2 ) |
19 |
1
|
fveq2i |
⊢ ( log ‘ 3 ) = ( log ‘ ( 2 + 1 ) ) |
20 |
18 19
|
oveq12i |
⊢ ( ( log ‘ 2 ) + ( log ‘ 3 ) ) = ( ( θ ‘ 2 ) + ( log ‘ ( 2 + 1 ) ) ) |
21 |
11 16 20
|
3eqtr3ri |
⊢ ( ( θ ‘ 2 ) + ( log ‘ ( 2 + 1 ) ) ) = ( log ‘ 6 ) |
22 |
2 7 21
|
3eqtri |
⊢ ( θ ‘ 3 ) = ( log ‘ 6 ) |