Metamath Proof Explorer


Theorem cht3

Description: The Chebyshev function at 3 . (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion cht3 ( θ ‘ 3 ) = ( log ‘ 6 )

Proof

Step Hyp Ref Expression
1 df-3 3 = ( 2 + 1 )
2 1 fveq2i ( θ ‘ 3 ) = ( θ ‘ ( 2 + 1 ) )
3 2z 2 ∈ ℤ
4 3prm 3 ∈ ℙ
5 1 4 eqeltrri ( 2 + 1 ) ∈ ℙ
6 chtprm ( ( 2 ∈ ℤ ∧ ( 2 + 1 ) ∈ ℙ ) → ( θ ‘ ( 2 + 1 ) ) = ( ( θ ‘ 2 ) + ( log ‘ ( 2 + 1 ) ) ) )
7 3 5 6 mp2an ( θ ‘ ( 2 + 1 ) ) = ( ( θ ‘ 2 ) + ( log ‘ ( 2 + 1 ) ) )
8 2rp 2 ∈ ℝ+
9 3rp 3 ∈ ℝ+
10 relogmul ( ( 2 ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( log ‘ ( 2 · 3 ) ) = ( ( log ‘ 2 ) + ( log ‘ 3 ) ) )
11 8 9 10 mp2an ( log ‘ ( 2 · 3 ) ) = ( ( log ‘ 2 ) + ( log ‘ 3 ) )
12 3cn 3 ∈ ℂ
13 2cn 2 ∈ ℂ
14 3t2e6 ( 3 · 2 ) = 6
15 12 13 14 mulcomli ( 2 · 3 ) = 6
16 15 fveq2i ( log ‘ ( 2 · 3 ) ) = ( log ‘ 6 )
17 cht2 ( θ ‘ 2 ) = ( log ‘ 2 )
18 17 eqcomi ( log ‘ 2 ) = ( θ ‘ 2 )
19 1 fveq2i ( log ‘ 3 ) = ( log ‘ ( 2 + 1 ) )
20 18 19 oveq12i ( ( log ‘ 2 ) + ( log ‘ 3 ) ) = ( ( θ ‘ 2 ) + ( log ‘ ( 2 + 1 ) ) )
21 11 16 20 3eqtr3ri ( ( θ ‘ 2 ) + ( log ‘ ( 2 + 1 ) ) ) = ( log ‘ 6 )
22 2 7 21 3eqtri ( θ ‘ 3 ) = ( log ‘ 6 )