Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelre |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℝ ) |
2 |
|
chtval |
⊢ ( 𝑁 ∈ ℝ → ( θ ‘ 𝑁 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( θ ‘ 𝑁 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
4 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
5 |
|
2z |
⊢ 2 ∈ ℤ |
6 |
|
ifcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 2 ∈ ℤ ) → if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ∈ ℤ ) |
7 |
4 5 6
|
sylancl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ∈ ℤ ) |
8 |
5
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 2 ∈ ℤ ) |
9 |
4
|
zred |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℝ ) |
10 |
|
2re |
⊢ 2 ∈ ℝ |
11 |
|
min2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 2 ∈ ℝ ) → if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ≤ 2 ) |
12 |
9 10 11
|
sylancl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ≤ 2 ) |
13 |
|
eluz2 |
⊢ ( 2 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ) ↔ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ∈ ℤ ∧ 2 ∈ ℤ ∧ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ≤ 2 ) ) |
14 |
7 8 12 13
|
syl3anbrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 2 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ) ) |
15 |
|
ppisval2 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ) ) → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑁 ) ) ∩ ℙ ) ) |
16 |
1 14 15
|
syl2anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑁 ) ) ∩ ℙ ) ) |
17 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
18 |
|
flid |
⊢ ( 𝑁 ∈ ℤ → ( ⌊ ‘ 𝑁 ) = 𝑁 ) |
19 |
17 18
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ⌊ ‘ 𝑁 ) = 𝑁 ) |
20 |
19
|
oveq2d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑁 ) ) = ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ) |
21 |
20
|
ineq1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑁 ) ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) |
22 |
16 21
|
eqtrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) |
23 |
22
|
sumeq1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → Σ 𝑝 ∈ ( ( 0 [,] 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) = Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
24 |
9
|
ltp1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 < ( 𝑀 + 1 ) ) |
25 |
|
fzdisj |
⊢ ( 𝑀 < ( 𝑀 + 1 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
26 |
24 25
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
27 |
26
|
ineq1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∩ ℙ ) = ( ∅ ∩ ℙ ) ) |
28 |
|
inindir |
⊢ ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∩ ℙ ) = ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∩ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) |
29 |
|
0in |
⊢ ( ∅ ∩ ℙ ) = ∅ |
30 |
27 28 29
|
3eqtr3g |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∩ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) = ∅ ) |
31 |
|
min1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 2 ∈ ℝ ) → if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ≤ 𝑀 ) |
32 |
9 10 31
|
sylancl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ≤ 𝑀 ) |
33 |
|
eluz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ) ↔ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ≤ 𝑀 ) ) |
34 |
7 4 32 33
|
syl3anbrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ) ) |
35 |
|
id |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
36 |
|
elfzuzb |
⊢ ( 𝑀 ∈ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ↔ ( 𝑀 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
37 |
34 35 36
|
sylanbrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ) |
38 |
|
fzsplit |
⊢ ( 𝑀 ∈ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) → ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
39 |
37 38
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
40 |
39
|
ineq1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) = ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∩ ℙ ) ) |
41 |
|
indir |
⊢ ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∩ ℙ ) = ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) |
42 |
40 41
|
eqtrdi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) = ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) ) |
43 |
|
fzfid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∈ Fin ) |
44 |
|
inss1 |
⊢ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ⊆ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) |
45 |
|
ssfi |
⊢ ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∈ Fin ∧ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ⊆ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ∈ Fin ) |
46 |
43 44 45
|
sylancl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ∈ Fin ) |
47 |
|
simpr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) |
48 |
47
|
elin2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
49 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
50 |
48 49
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
51 |
50
|
nnrpd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
52 |
51
|
relogcld |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
53 |
52
|
recnd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
54 |
30 42 46 53
|
fsumsplit |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) = ( Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) + Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) ) |
55 |
23 54
|
eqtrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → Σ 𝑝 ∈ ( ( 0 [,] 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) = ( Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) + Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) ) |
56 |
3 55
|
eqtrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( θ ‘ 𝑁 ) = ( Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) + Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) ) |
57 |
|
chtval |
⊢ ( 𝑀 ∈ ℝ → ( θ ‘ 𝑀 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
58 |
9 57
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( θ ‘ 𝑀 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
59 |
|
ppisval2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ) ) → ( ( 0 [,] 𝑀 ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑀 ) ) ∩ ℙ ) ) |
60 |
9 14 59
|
syl2anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 0 [,] 𝑀 ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑀 ) ) ∩ ℙ ) ) |
61 |
|
flid |
⊢ ( 𝑀 ∈ ℤ → ( ⌊ ‘ 𝑀 ) = 𝑀 ) |
62 |
4 61
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ⌊ ‘ 𝑀 ) = 𝑀 ) |
63 |
62
|
oveq2d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑀 ) ) = ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ) |
64 |
63
|
ineq1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑀 ) ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ) |
65 |
60 64
|
eqtrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 0 [,] 𝑀 ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ) |
66 |
65
|
sumeq1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → Σ 𝑝 ∈ ( ( 0 [,] 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) = Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
67 |
58 66
|
eqtrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( θ ‘ 𝑀 ) = Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
68 |
56 67
|
oveq12d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( θ ‘ 𝑁 ) − ( θ ‘ 𝑀 ) ) = ( ( Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) + Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) − Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) ) |
69 |
|
fzfi |
⊢ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∈ Fin |
70 |
|
inss1 |
⊢ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ⊆ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) |
71 |
|
ssfi |
⊢ ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∈ Fin ∧ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ⊆ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∈ Fin ) |
72 |
69 70 71
|
mp2an |
⊢ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∈ Fin |
73 |
72
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∈ Fin ) |
74 |
|
ssun1 |
⊢ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ⊆ ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) |
75 |
74 42
|
sseqtrrid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ⊆ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) |
76 |
75
|
sselda |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) |
77 |
76 53
|
syldan |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
78 |
73 77
|
fsumcl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) ∈ ℂ ) |
79 |
|
fzfi |
⊢ ( ( 𝑀 + 1 ) ... 𝑁 ) ∈ Fin |
80 |
|
inss1 |
⊢ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ⊆ ( ( 𝑀 + 1 ) ... 𝑁 ) |
81 |
|
ssfi |
⊢ ( ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∈ Fin ∧ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ⊆ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ∈ Fin ) |
82 |
79 80 81
|
mp2an |
⊢ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ∈ Fin |
83 |
82
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ∈ Fin ) |
84 |
|
ssun2 |
⊢ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ⊆ ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) |
85 |
84 42
|
sseqtrrid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ⊆ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) |
86 |
85
|
sselda |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) |
87 |
86 53
|
syldan |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
88 |
83 87
|
fsumcl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ∈ ℂ ) |
89 |
78 88
|
pncan2d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) + Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) − Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) = Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
90 |
68 89
|
eqtrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( θ ‘ 𝑁 ) − ( θ ‘ 𝑀 ) ) = Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |