Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
⊢ 2 ∈ ℝ |
2 |
|
lenlt |
⊢ ( ( 2 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 2 ≤ 𝐴 ↔ ¬ 𝐴 < 2 ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 2 ≤ 𝐴 ↔ ¬ 𝐴 < 2 ) ) |
4 |
|
chtrpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( θ ‘ 𝐴 ) ∈ ℝ+ ) |
5 |
4
|
rpne0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( θ ‘ 𝐴 ) ≠ 0 ) |
6 |
5
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 2 ≤ 𝐴 → ( θ ‘ 𝐴 ) ≠ 0 ) ) |
7 |
3 6
|
sylbird |
⊢ ( 𝐴 ∈ ℝ → ( ¬ 𝐴 < 2 → ( θ ‘ 𝐴 ) ≠ 0 ) ) |
8 |
7
|
necon4bd |
⊢ ( 𝐴 ∈ ℝ → ( ( θ ‘ 𝐴 ) = 0 → 𝐴 < 2 ) ) |
9 |
|
chtlepsi |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) ≤ ( ψ ‘ 𝐴 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( θ ‘ 𝐴 ) ≤ ( ψ ‘ 𝐴 ) ) |
11 |
|
chpeq0 |
⊢ ( 𝐴 ∈ ℝ → ( ( ψ ‘ 𝐴 ) = 0 ↔ 𝐴 < 2 ) ) |
12 |
11
|
biimpar |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( ψ ‘ 𝐴 ) = 0 ) |
13 |
10 12
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( θ ‘ 𝐴 ) ≤ 0 ) |
14 |
|
chtge0 |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( θ ‘ 𝐴 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → 0 ≤ ( θ ‘ 𝐴 ) ) |
16 |
|
chtcl |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) ∈ ℝ ) |
17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( θ ‘ 𝐴 ) ∈ ℝ ) |
18 |
|
0re |
⊢ 0 ∈ ℝ |
19 |
|
letri3 |
⊢ ( ( ( θ ‘ 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( θ ‘ 𝐴 ) = 0 ↔ ( ( θ ‘ 𝐴 ) ≤ 0 ∧ 0 ≤ ( θ ‘ 𝐴 ) ) ) ) |
20 |
17 18 19
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( ( θ ‘ 𝐴 ) = 0 ↔ ( ( θ ‘ 𝐴 ) ≤ 0 ∧ 0 ≤ ( θ ‘ 𝐴 ) ) ) ) |
21 |
13 15 20
|
mpbir2and |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( θ ‘ 𝐴 ) = 0 ) |
22 |
21
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 2 → ( θ ‘ 𝐴 ) = 0 ) ) |
23 |
8 22
|
impbid |
⊢ ( 𝐴 ∈ ℝ → ( ( θ ‘ 𝐴 ) = 0 ↔ 𝐴 < 2 ) ) |