Step |
Hyp |
Ref |
Expression |
1 |
|
flidm |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( ⌊ ‘ 𝐴 ) ) = ( ⌊ ‘ 𝐴 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ → ( 2 ... ( ⌊ ‘ ( ⌊ ‘ 𝐴 ) ) ) = ( 2 ... ( ⌊ ‘ 𝐴 ) ) ) |
3 |
2
|
ineq1d |
⊢ ( 𝐴 ∈ ℝ → ( ( 2 ... ( ⌊ ‘ ( ⌊ ‘ 𝐴 ) ) ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
4 |
|
reflcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
5 |
|
ppisval |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( ( 0 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ ( ⌊ ‘ 𝐴 ) ) ) ∩ ℙ ) ) |
6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ ( ⌊ ‘ 𝐴 ) ) ) ∩ ℙ ) ) |
7 |
|
ppisval |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
8 |
3 6 7
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
9 |
8
|
sumeq1d |
⊢ ( 𝐴 ∈ ℝ → Σ 𝑝 ∈ ( ( 0 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
10 |
|
chtval |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( θ ‘ ( ⌊ ‘ 𝐴 ) ) = Σ 𝑝 ∈ ( ( 0 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
11 |
4 10
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ ( ⌊ ‘ 𝐴 ) ) = Σ 𝑝 ∈ ( ( 0 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
12 |
|
chtval |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
13 |
9 11 12
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ ( ⌊ ‘ 𝐴 ) ) = ( θ ‘ 𝐴 ) ) |