Step |
Hyp |
Ref |
Expression |
1 |
|
ppifi |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ) |
2 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
3 |
2
|
elin2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
4 |
|
prmuz2 |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
6 |
|
eluz2b2 |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑝 ∈ ℕ ∧ 1 < 𝑝 ) ) |
7 |
5 6
|
sylib |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 ∈ ℕ ∧ 1 < 𝑝 ) ) |
8 |
7
|
simpld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
9 |
8
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
10 |
9
|
relogcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
11 |
8
|
nnred |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ ) |
12 |
7
|
simprd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 1 < 𝑝 ) |
13 |
11 12
|
rplogcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
14 |
13
|
rpge0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 0 ≤ ( log ‘ 𝑝 ) ) |
15 |
1 10 14
|
fsumge0 |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
16 |
|
chtval |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
17 |
15 16
|
breqtrrd |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( θ ‘ 𝐴 ) ) |