Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
2 |
|
ppifi |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ) |
4 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
5 |
4
|
elin2d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
6 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
8 |
7
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
9 |
8
|
relogcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
10 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
11 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
12 |
4
|
elin1d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( 0 [,] 𝐴 ) ) |
13 |
|
0re |
⊢ 0 ∈ ℝ |
14 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) ) |
15 |
13 1 14
|
sylancr |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) ) |
16 |
15
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) |
17 |
12 16
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) |
18 |
17
|
simp3d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ≤ 𝐴 ) |
19 |
8
|
reeflogd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( exp ‘ ( log ‘ 𝑝 ) ) = 𝑝 ) |
20 |
|
reeflog |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
21 |
20
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
22 |
18 19 21
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( exp ‘ ( log ‘ 𝑝 ) ) ≤ ( exp ‘ ( log ‘ 𝐴 ) ) ) |
23 |
|
efle |
⊢ ( ( ( log ‘ 𝑝 ) ∈ ℝ ∧ ( log ‘ 𝐴 ) ∈ ℝ ) → ( ( log ‘ 𝑝 ) ≤ ( log ‘ 𝐴 ) ↔ ( exp ‘ ( log ‘ 𝑝 ) ) ≤ ( exp ‘ ( log ‘ 𝐴 ) ) ) ) |
24 |
9 11 23
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝑝 ) ≤ ( log ‘ 𝐴 ) ↔ ( exp ‘ ( log ‘ 𝑝 ) ) ≤ ( exp ‘ ( log ‘ 𝐴 ) ) ) ) |
25 |
22 24
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ≤ ( log ‘ 𝐴 ) ) |
26 |
3 9 11 25
|
fsumle |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ≤ Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝐴 ) ) |
27 |
|
chtval |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
28 |
1 27
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
29 |
|
ppival |
⊢ ( 𝐴 ∈ ℝ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ) |
30 |
1 29
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ) |
31 |
30
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( π ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) = ( ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) · ( log ‘ 𝐴 ) ) ) |
32 |
10
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
33 |
|
fsumconst |
⊢ ( ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ∧ ( log ‘ 𝐴 ) ∈ ℂ ) → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝐴 ) = ( ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) · ( log ‘ 𝐴 ) ) ) |
34 |
3 32 33
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝐴 ) = ( ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) · ( log ‘ 𝐴 ) ) ) |
35 |
31 34
|
eqtr4d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( π ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝐴 ) ) |
36 |
26 28 35
|
3brtr4d |
⊢ ( 𝐴 ∈ ℝ+ → ( θ ‘ 𝐴 ) ≤ ( ( π ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) ) |