Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
⊢ ( 𝐴 ∈ ℝ → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
2 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) |
3 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
4 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
6 |
|
vmage0 |
⊢ ( 𝑛 ∈ ℕ → 0 ≤ ( Λ ‘ 𝑛 ) ) |
7 |
3 6
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 0 ≤ ( Λ ‘ 𝑛 ) ) |
8 |
|
ppisval |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
9 |
|
inss1 |
⊢ ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ⊆ ( 2 ... ( ⌊ ‘ 𝐴 ) ) |
10 |
|
2eluzge1 |
⊢ 2 ∈ ( ℤ≥ ‘ 1 ) |
11 |
|
fzss1 |
⊢ ( 2 ∈ ( ℤ≥ ‘ 1 ) → ( 2 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
12 |
10 11
|
mp1i |
⊢ ( 𝐴 ∈ ℝ → ( 2 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
13 |
9 12
|
sstrid |
⊢ ( 𝐴 ∈ ℝ → ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ⊆ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
14 |
8 13
|
eqsstrd |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ⊆ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
15 |
1 5 7 14
|
fsumless |
⊢ ( 𝐴 ∈ ℝ → Σ 𝑛 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( Λ ‘ 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) ) |
16 |
|
chtval |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) = Σ 𝑛 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑛 ) ) |
17 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑛 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑛 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
18 |
17
|
elin2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑛 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑛 ∈ ℙ ) |
19 |
|
vmaprm |
⊢ ( 𝑛 ∈ ℙ → ( Λ ‘ 𝑛 ) = ( log ‘ 𝑛 ) ) |
20 |
18 19
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑛 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( Λ ‘ 𝑛 ) = ( log ‘ 𝑛 ) ) |
21 |
20
|
sumeq2dv |
⊢ ( 𝐴 ∈ ℝ → Σ 𝑛 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( Λ ‘ 𝑛 ) = Σ 𝑛 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑛 ) ) |
22 |
16 21
|
eqtr4d |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) = Σ 𝑛 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( Λ ‘ 𝑛 ) ) |
23 |
|
chpval |
⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) ) |
24 |
15 22 23
|
3brtr4d |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) ≤ ( ψ ‘ 𝐴 ) ) |