| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 2 |
1
|
a1i |
⊢ ( ⊤ → ℝ+ ⊆ ℝ ) |
| 3 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 4 |
|
chtcl |
⊢ ( 𝑥 ∈ ℝ → ( θ ‘ 𝑥 ) ∈ ℝ ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( θ ‘ 𝑥 ) ∈ ℝ ) |
| 6 |
|
rerpdivcl |
⊢ ( ( ( θ ‘ 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( θ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 7 |
5 6
|
mpancom |
⊢ ( 𝑥 ∈ ℝ+ → ( ( θ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 8 |
7
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( θ ‘ 𝑥 ) / 𝑥 ) ∈ ℂ ) |
| 9 |
8
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( θ ‘ 𝑥 ) / 𝑥 ) ∈ ℂ ) |
| 10 |
|
3re |
⊢ 3 ∈ ℝ |
| 11 |
10
|
a1i |
⊢ ( ⊤ → 3 ∈ ℝ ) |
| 12 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 13 |
|
relogcl |
⊢ ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) |
| 14 |
12 13
|
ax-mp |
⊢ ( log ‘ 2 ) ∈ ℝ |
| 15 |
|
2re |
⊢ 2 ∈ ℝ |
| 16 |
14 15
|
remulcli |
⊢ ( ( log ‘ 2 ) · 2 ) ∈ ℝ |
| 17 |
16
|
a1i |
⊢ ( ⊤ → ( ( log ‘ 2 ) · 2 ) ∈ ℝ ) |
| 18 |
|
chtge0 |
⊢ ( 𝑥 ∈ ℝ → 0 ≤ ( θ ‘ 𝑥 ) ) |
| 19 |
3 18
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → 0 ≤ ( θ ‘ 𝑥 ) ) |
| 20 |
|
rpregt0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 21 |
|
divge0 |
⊢ ( ( ( ( θ ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( θ ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → 0 ≤ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) |
| 22 |
5 19 20 21
|
syl21anc |
⊢ ( 𝑥 ∈ ℝ+ → 0 ≤ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) |
| 23 |
7 22
|
absidd |
⊢ ( 𝑥 ∈ ℝ+ → ( abs ‘ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) = ( ( θ ‘ 𝑥 ) / 𝑥 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( abs ‘ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) = ( ( θ ‘ 𝑥 ) / 𝑥 ) ) |
| 25 |
7
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( ( θ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 26 |
16
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( ( log ‘ 2 ) · 2 ) ∈ ℝ ) |
| 27 |
5
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( θ ‘ 𝑥 ) ∈ ℝ ) |
| 28 |
3
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
| 29 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 2 · 𝑥 ) ∈ ℝ ) |
| 30 |
15 28 29
|
sylancr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( 2 · 𝑥 ) ∈ ℝ ) |
| 31 |
|
resubcl |
⊢ ( ( ( 2 · 𝑥 ) ∈ ℝ ∧ 3 ∈ ℝ ) → ( ( 2 · 𝑥 ) − 3 ) ∈ ℝ ) |
| 32 |
30 10 31
|
sylancl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( ( 2 · 𝑥 ) − 3 ) ∈ ℝ ) |
| 33 |
|
remulcl |
⊢ ( ( ( log ‘ 2 ) ∈ ℝ ∧ ( ( 2 · 𝑥 ) − 3 ) ∈ ℝ ) → ( ( log ‘ 2 ) · ( ( 2 · 𝑥 ) − 3 ) ) ∈ ℝ ) |
| 34 |
14 32 33
|
sylancr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( ( log ‘ 2 ) · ( ( 2 · 𝑥 ) − 3 ) ) ∈ ℝ ) |
| 35 |
|
remulcl |
⊢ ( ( ( log ‘ 2 ) ∈ ℝ ∧ ( 2 · 𝑥 ) ∈ ℝ ) → ( ( log ‘ 2 ) · ( 2 · 𝑥 ) ) ∈ ℝ ) |
| 36 |
14 30 35
|
sylancr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( ( log ‘ 2 ) · ( 2 · 𝑥 ) ) ∈ ℝ ) |
| 37 |
15
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → 2 ∈ ℝ ) |
| 38 |
10
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → 3 ∈ ℝ ) |
| 39 |
|
2lt3 |
⊢ 2 < 3 |
| 40 |
39
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → 2 < 3 ) |
| 41 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → 3 ≤ 𝑥 ) |
| 42 |
37 38 28 40 41
|
ltletrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → 2 < 𝑥 ) |
| 43 |
|
chtub |
⊢ ( ( 𝑥 ∈ ℝ ∧ 2 < 𝑥 ) → ( θ ‘ 𝑥 ) < ( ( log ‘ 2 ) · ( ( 2 · 𝑥 ) − 3 ) ) ) |
| 44 |
28 42 43
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( θ ‘ 𝑥 ) < ( ( log ‘ 2 ) · ( ( 2 · 𝑥 ) − 3 ) ) ) |
| 45 |
|
3rp |
⊢ 3 ∈ ℝ+ |
| 46 |
|
ltsubrp |
⊢ ( ( ( 2 · 𝑥 ) ∈ ℝ ∧ 3 ∈ ℝ+ ) → ( ( 2 · 𝑥 ) − 3 ) < ( 2 · 𝑥 ) ) |
| 47 |
30 45 46
|
sylancl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( ( 2 · 𝑥 ) − 3 ) < ( 2 · 𝑥 ) ) |
| 48 |
|
1lt2 |
⊢ 1 < 2 |
| 49 |
|
rplogcl |
⊢ ( ( 2 ∈ ℝ ∧ 1 < 2 ) → ( log ‘ 2 ) ∈ ℝ+ ) |
| 50 |
15 48 49
|
mp2an |
⊢ ( log ‘ 2 ) ∈ ℝ+ |
| 51 |
|
elrp |
⊢ ( ( log ‘ 2 ) ∈ ℝ+ ↔ ( ( log ‘ 2 ) ∈ ℝ ∧ 0 < ( log ‘ 2 ) ) ) |
| 52 |
50 51
|
mpbi |
⊢ ( ( log ‘ 2 ) ∈ ℝ ∧ 0 < ( log ‘ 2 ) ) |
| 53 |
52
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( ( log ‘ 2 ) ∈ ℝ ∧ 0 < ( log ‘ 2 ) ) ) |
| 54 |
|
ltmul2 |
⊢ ( ( ( ( 2 · 𝑥 ) − 3 ) ∈ ℝ ∧ ( 2 · 𝑥 ) ∈ ℝ ∧ ( ( log ‘ 2 ) ∈ ℝ ∧ 0 < ( log ‘ 2 ) ) ) → ( ( ( 2 · 𝑥 ) − 3 ) < ( 2 · 𝑥 ) ↔ ( ( log ‘ 2 ) · ( ( 2 · 𝑥 ) − 3 ) ) < ( ( log ‘ 2 ) · ( 2 · 𝑥 ) ) ) ) |
| 55 |
32 30 53 54
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( ( ( 2 · 𝑥 ) − 3 ) < ( 2 · 𝑥 ) ↔ ( ( log ‘ 2 ) · ( ( 2 · 𝑥 ) − 3 ) ) < ( ( log ‘ 2 ) · ( 2 · 𝑥 ) ) ) ) |
| 56 |
47 55
|
mpbid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( ( log ‘ 2 ) · ( ( 2 · 𝑥 ) − 3 ) ) < ( ( log ‘ 2 ) · ( 2 · 𝑥 ) ) ) |
| 57 |
27 34 36 44 56
|
lttrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( θ ‘ 𝑥 ) < ( ( log ‘ 2 ) · ( 2 · 𝑥 ) ) ) |
| 58 |
14
|
recni |
⊢ ( log ‘ 2 ) ∈ ℂ |
| 59 |
58
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( log ‘ 2 ) ∈ ℂ ) |
| 60 |
|
2cnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → 2 ∈ ℂ ) |
| 61 |
3
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) |
| 62 |
61
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → 𝑥 ∈ ℂ ) |
| 63 |
59 60 62
|
mulassd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( ( ( log ‘ 2 ) · 2 ) · 𝑥 ) = ( ( log ‘ 2 ) · ( 2 · 𝑥 ) ) ) |
| 64 |
57 63
|
breqtrrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( θ ‘ 𝑥 ) < ( ( ( log ‘ 2 ) · 2 ) · 𝑥 ) ) |
| 65 |
20
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 66 |
|
ltdivmul2 |
⊢ ( ( ( θ ‘ 𝑥 ) ∈ ℝ ∧ ( ( log ‘ 2 ) · 2 ) ∈ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → ( ( ( θ ‘ 𝑥 ) / 𝑥 ) < ( ( log ‘ 2 ) · 2 ) ↔ ( θ ‘ 𝑥 ) < ( ( ( log ‘ 2 ) · 2 ) · 𝑥 ) ) ) |
| 67 |
27 26 65 66
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( ( ( θ ‘ 𝑥 ) / 𝑥 ) < ( ( log ‘ 2 ) · 2 ) ↔ ( θ ‘ 𝑥 ) < ( ( ( log ‘ 2 ) · 2 ) · 𝑥 ) ) ) |
| 68 |
64 67
|
mpbird |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( ( θ ‘ 𝑥 ) / 𝑥 ) < ( ( log ‘ 2 ) · 2 ) ) |
| 69 |
25 26 68
|
ltled |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( ( θ ‘ 𝑥 ) / 𝑥 ) ≤ ( ( log ‘ 2 ) · 2 ) ) |
| 70 |
24 69
|
eqbrtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) → ( abs ‘ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ≤ ( ( log ‘ 2 ) · 2 ) ) |
| 71 |
70
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥 ) ) → ( abs ‘ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ≤ ( ( log ‘ 2 ) · 2 ) ) |
| 72 |
2 9 11 17 71
|
elo1d |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) ) |
| 73 |
72
|
mptru |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) |