Step |
Hyp |
Ref |
Expression |
1 |
|
chtcl |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) ∈ ℝ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( θ ‘ 𝐴 ) ∈ ℝ ) |
3 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → 0 ∈ ℝ ) |
4 |
|
2re |
⊢ 2 ∈ ℝ |
5 |
|
1lt2 |
⊢ 1 < 2 |
6 |
|
rplogcl |
⊢ ( ( 2 ∈ ℝ ∧ 1 < 2 ) → ( log ‘ 2 ) ∈ ℝ+ ) |
7 |
4 5 6
|
mp2an |
⊢ ( log ‘ 2 ) ∈ ℝ+ |
8 |
|
rpre |
⊢ ( ( log ‘ 2 ) ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) |
9 |
7 8
|
mp1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( log ‘ 2 ) ∈ ℝ ) |
10 |
|
rpgt0 |
⊢ ( ( log ‘ 2 ) ∈ ℝ+ → 0 < ( log ‘ 2 ) ) |
11 |
7 10
|
mp1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → 0 < ( log ‘ 2 ) ) |
12 |
|
cht2 |
⊢ ( θ ‘ 2 ) = ( log ‘ 2 ) |
13 |
|
chtwordi |
⊢ ( ( 2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( θ ‘ 2 ) ≤ ( θ ‘ 𝐴 ) ) |
14 |
4 13
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( θ ‘ 2 ) ≤ ( θ ‘ 𝐴 ) ) |
15 |
12 14
|
eqbrtrrid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( log ‘ 2 ) ≤ ( θ ‘ 𝐴 ) ) |
16 |
3 9 2 11 15
|
ltletrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → 0 < ( θ ‘ 𝐴 ) ) |
17 |
2 16
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( θ ‘ 𝐴 ) ∈ ℝ+ ) |