Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
2 |
|
ppifi |
⊢ ( 𝐵 ∈ ℝ → ( ( 0 [,] 𝐵 ) ∩ ℙ ) ∈ Fin ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( 0 [,] 𝐵 ) ∩ ℙ ) ∈ Fin ) |
4 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) |
5 |
4
|
elin2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
6 |
|
prmuz2 |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
7 |
5 6
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
8 |
|
eluz2b2 |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑝 ∈ ℕ ∧ 1 < 𝑝 ) ) |
9 |
7 8
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → ( 𝑝 ∈ ℕ ∧ 1 < 𝑝 ) ) |
10 |
9
|
simpld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
11 |
10
|
nnred |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ ) |
12 |
9
|
simprd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → 1 < 𝑝 ) |
13 |
11 12
|
rplogcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
14 |
13
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
15 |
13
|
rpge0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → 0 ≤ ( log ‘ 𝑝 ) ) |
16 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 0 ∈ ℝ ) |
17 |
|
0le0 |
⊢ 0 ≤ 0 |
18 |
17
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 0 ≤ 0 ) |
19 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
20 |
|
iccss |
⊢ ( ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 0 [,] 𝐴 ) ⊆ ( 0 [,] 𝐵 ) ) |
21 |
16 1 18 19 20
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 0 [,] 𝐴 ) ⊆ ( 0 [,] 𝐵 ) ) |
22 |
21
|
ssrind |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ⊆ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) |
23 |
3 14 15 22
|
fsumless |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ≤ Σ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
24 |
|
chtval |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
25 |
24
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
26 |
|
chtval |
⊢ ( 𝐵 ∈ ℝ → ( θ ‘ 𝐵 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
27 |
1 26
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐵 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
28 |
23 25 27
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐴 ) ≤ ( θ ‘ 𝐵 ) ) |