Metamath Proof Explorer


Theorem chunssji

Description: Union is smaller than CH join. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion chunssji ( 𝐴𝐵 ) ⊆ ( 𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 chjcl.2 𝐵C
3 1 chshii 𝐴S
4 2 chshii 𝐵S
5 3 4 shunssji ( 𝐴𝐵 ) ⊆ ( 𝐴 𝐵 )