Database BASIC CATEGORY THEORY Categories Isomorphic objects cic  
				
		 
		
			
		 
		Theorem cic  
		Description:   Objects X  and Y  in a category are isomorphic provided that there
       is an isomorphism f : X --> Y  , see definition 3.15 of Adamek 
       p. 29.  (Contributed by AV , 4-Apr-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						cic.i ⊢  𝐼   =  ( Iso ‘ 𝐶  )  
					
						cic.b ⊢  𝐵   =  ( Base ‘ 𝐶  )  
					
						cic.c ⊢  ( 𝜑   →  𝐶   ∈  Cat )  
					
						cic.x ⊢  ( 𝜑   →  𝑋   ∈  𝐵  )  
					
						cic.y ⊢  ( 𝜑   →  𝑌   ∈  𝐵  )  
				
					Assertion 
					cic ⊢   ( 𝜑   →  ( 𝑋  (  ≃𝑐   ‘ 𝐶  ) 𝑌   ↔  ∃ 𝑓  𝑓   ∈  ( 𝑋  𝐼  𝑌  ) ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							cic.i ⊢  𝐼   =  ( Iso ‘ 𝐶  )  
						
							2 
								
							 
							cic.b ⊢  𝐵   =  ( Base ‘ 𝐶  )  
						
							3 
								
							 
							cic.c ⊢  ( 𝜑   →  𝐶   ∈  Cat )  
						
							4 
								
							 
							cic.x ⊢  ( 𝜑   →  𝑋   ∈  𝐵  )  
						
							5 
								
							 
							cic.y ⊢  ( 𝜑   →  𝑌   ∈  𝐵  )  
						
							6 
								1  2  3  4  5 
							 
							brcic ⊢  ( 𝜑   →  ( 𝑋  (  ≃𝑐   ‘ 𝐶  ) 𝑌   ↔  ( 𝑋  𝐼  𝑌  )  ≠  ∅ ) )  
						
							7 
								
							 
							n0 ⊢  ( ( 𝑋  𝐼  𝑌  )  ≠  ∅  ↔  ∃ 𝑓  𝑓   ∈  ( 𝑋  𝐼  𝑌  ) )  
						
							8 
								6  7 
							 
							bitrdi ⊢  ( 𝜑   →  ( 𝑋  (  ≃𝑐   ‘ 𝐶  ) 𝑌   ↔  ∃ 𝑓  𝑓   ∈  ( 𝑋  𝐼  𝑌  ) ) )